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In maximum likelihood decoding, the probability of error (p(error)) is computed by comparing a given 

observation to a threshold.  In the first analysis of this homework, 10,000 random data points were generated 

from two Gaussian random variables (𝐺𝑅𝑉(𝜇, 𝜎2)) and the probability of error was computed using a 

simple Matlab script.  These results were compared to the analytical probability of error and are listed in 

Tables I and II respectively for 𝐺𝑅𝑉(1,1) and 𝐺𝑅𝑉(−1,1). 

 

Table I.  Probability of Error for GRV(1,1) 

GRV(1,1) 

Threshold p(error)sim p(error)analytical 

0 0.157 0.1586 

-0.5 0.066 0.0668 

0.5 0.31 0.3085 

 

Table II.  Probability of Error for GRV(-1,1) 

GRV(-1,1) 

Threshold p(error)sim p(error)analytical 

0 0.157 0.1586 

-0.5 0.31 0.3085 

0.5 0.066 0.0668 

 

Given that the means of GRV(1,1) and GRV(-1,1) are equidistant from the first threshold of 0, it makes 

sense that their p(error) are identical (See Tables I and II).  Similarly because of symmetry, the p(error) for 

GRV(1,1) and GRV(-1,1) with threshold of -0.5 and 0.5 have opposite values for p(error) with respect to 

each other.   These results are confirmed when they are compared to the analytical results for the p(error).  

Note that the analytical p(error) was computed numerically in Matlab by integrating the standard equation 

for a normal distribution.  The limits of integration for each error was between the threshold and 3 standard 

deviations.  Ideally we would integrate to infinity (or from infinity depending on the distribution under 

consideration), but since 99% of the area under the distribution is within 3 standard deviations, we can 

achieve an accurate approximation by integrating to 3 standard deviations (or from 3 standard deviations).  

The next question that arises is what happens to the error rate as the variance of the normal distribution is 

changed.  By considering the distributions GRV(1,1) and GRV(-1,1) with a threshold of 0, Intuitevly, we 

would expect the error to be directly proportional to the variance because as the variance decresease, the 

distribution curve gets more narrow.  Thus the amount of area that exceeds the threshold is reduced thereby 

reducing the p(error).  Figure 1, confirms this intution by plotting the p(error) for a normal distribution with 

a mean of 1 and a threshold of 0 as a function of the variance.  100,000 data points were genereated and 

compared to the threshold to produce a smooth curve.  The variance was varied from 0 to 5 with interval 

spacings of 0.1.   

From Figure 5, we observe that the p(error) takes a sharp increase when the variance starts to exceeds 0.3.  

The reason is justified by recgonizing that the distance between the mean of the normal distribution and the 



threshold is 1 (mean = 1, threshold = 0).  As was mentioned before, 99% of the area is within three standard 

deviations.  if we take the distance between the mean and threshold and divide by three, we find that the 

maximum standard deviation before crossing the threshold is 1/3.  Squaring this results in a variance of 1/9 

= 0.1111.  Thus when the variance exceeds 0.1111, the p(error) starts increasing in accordance with the 

exponetional nature of the normal distribution.   

 

 

Figure 1.  p(error) as a function of variance for GRV(1,1). 

 

Now we consider a two dimensional (2D) normal distribution.  We will present the same analysis for the 

2D case as we did for the 1D case excepts that the tools used for analysis differ to account for the added 

dimension.  Adding a second dimension is like adding another classifier for decision pruposes.  An example 

of classifiers could be the length and lightness used for deciding whether a fish is a sea bass and salmon.  

Figure 1 depicts two 2D normal distrubtions with means of [-1 1] for GRV1 and [1 1] for GRV2.  Both 

distributions have an identity covariance matrix. 

 

Figure 2.  2D normal distributions with identity covariance matrices and means of [-1 1] and [1 1] respectivly. 

 

Again we computed the p(error) for each 2D distribution when the threshold was -0.5, 0, and 0.5.  For this 

analysis, 1000 data points were generated from each distribution.  The distribution of data points are 

illustrated in Figure 3. 



 

Figure 3.  1,000 normally distributed data points for each of the 2D GRV 

 

Interestingly enough, when the p(error) for a multivariate normal random variable is computed, the results 

are similar to the univariate case in the 1D analysis.  Comparing Tables III to I and IV to II, we find almost 

identical results.  

Table III 

2D GRV([1 1], [1 0; 0 1]) 

Threshold p(error)sim 

0 0.154 

-0.5 0.062 

0.5 0.307 

 

Table IV. 

2D GRV([-1 1], [1 0; 0 1]) 

Threshold p(error)sim 

0 0.159 

-0.5 0.31 

0.5 0.063 

 

When the decision threshold is zero along the x-axis, the p(error) for each distribution is approximately the 

same and when the decision thresholds are -0.5 and 0.5, the distributions p(error) are opposite each other’s.  

Again this is the result of symmetry amongst the means and covariance’s. 

In our final analysis, we varied the covariance matrix of one normal distribution and compared it to the 

other to see how it effects the shape of the support region.  In Matlab, we can generate a support region by 

plotting a contour plot of the distribution.  Each contour line represents a constant probability.   



 

Figure 4.  Support regions for two normal distributions with identity covariance matrices. 

 

Figure 5.  Support regions for two normal distributions with GRV1 having a covariance matrix of [.1 0; 0 1] 

and GRV2 having and identity covariance matrix 

 

 

Figure 6.  Support regions for two normal distributions with GRV1 having a covariance matrix of [1 0.75; 0.75 

1] and GRV2 having and identity covariance matrix 



Figures 4-6 illustrate how changing the covariance matrix results in a support region with a different shape.  

Mathematically, the covariance matrix is represented as follows: 

𝐶𝑂𝑉𝐴𝑅 = [
𝜎𝑥
2 𝜎𝑥𝑦

𝜎𝑦𝑥 𝜎𝑦
2 ]                                                                       (1) 

Thus from equation (1) we can adjust how wide or narrow the support region is by adjusting 𝜎𝑥
2 or 𝜎𝑦

2 or 

we can rotate the support by adjusting 𝜎𝑦𝑥 and 𝜎𝑥𝑦.  However, it’s important to note that the covariance 

matrix must be a square, symmetric positive definite matrix.   

In Figure 4, the covariance matrices for each distribution are an identity matrix.  The result is a 2D normal 

distribution with equal variance in all direction form the mean.  In Figure 5 though, the covariance matrix 

of GRV1 is [.1 0; 0 1].  The variance of the classifier, x1 was reduced from 1 to 0.1 resulting in a narrower 

distribution along the x-axis and a reduced p(error).  Finally, Figure 5, illustrates a rotated support region.  

This is accomplished by adjusting the off diagonal elements of equation (1).  The covariance matrix in 

Figure 5 was [1 0.75;0.75 1].  The larger the off diagonal elements, the larger the rotation. 

_____________________________________________________________________________________ 

clear; 
clc; 
clf; 
% 
% Brian Thibodeau 
% ECE 8527:  Machine Learning 
% HW NO. 1:  Gaussian Distributions and  
%            Maximum likelihood Decoding 
% 
% 
% Q1 
x1 = normrnd(1,1,1,10e3); 
x2 = normrnd(-1,1,1,10e3); 

  
tr = 0;   

  
x1_count_c1 = 0; 
x1_count_c2 = 0; 
x2_count_c1 = 0; 
x2_count_c2 = 0; 

  
for j = 1:length(x1) 
    if (x1(j) > tr) 
        x1_count_c1 = x1_count_c1 + 1; 
    end 
    if (x1(j) < tr) 
        x1_count_c2 = x1_count_c2 + 1; 
    end 

     
    if (x2(j) > tr) 
        x2_count_c1 = x2_count_c1 + 1; 
    end 
    if (x2(j) < tr) 
        x2_count_c2 = x2_count_c2 + 1; 
    end     



end 

  
perr_x1 = x1_count_c2/length(x1); 
perr_x2 = x2_count_c1/length(x2); 

  
syms x; 
mu1 = -1; 
sigma = 1; 
rv = 1/sqrt(2*pi*sigma)*exp(-1/2*((x-mu1)^2/sigma)); 
double(int(rv,x,tr,3*sigma)) 
%% Q2 
clear; 
clc; 
clf; 

  
var = 0:0.1:5; 
mu1 = 1; 
tr = 0; 
for i = 1:length(var) 
    x1 = normrnd(mu1,var(i),1,1e6); 
    errCnt = 0; 
    for j = 1:length(x1) 
        if (x1(j) < tr) 
            errCnt = errCnt+ 1; 
        end     
    end 
    perr(i) = errCnt/length(x1); 
end 
plot(var,perr); 
xlabel('Variance'); 
ylabel('p(error)'); 
%% Q3 
clear; 
clc; 
clf; 

  
tr = 0.5; 

  
mu1 = [1 1]; 
mu2 = [-1 1]; 
sigma1 = [1 0;0 1]; 
sigma2 = [1 0;0 1]; 
r1 = mvnrnd(mu1,sigma1,1e3); 
r2 = mvnrnd(mu2,sigma2,1e3); 
plot(r1(:,1),r1(:,2),'+',r2(:,1),r2(:,2),'+'); 
xlabel('x data'); 
ylabel('y data'); 
legend('2D GRV(1,1)','2D GRV(-1,1)'); 
r1numErr = 0; 
r2numErr = 0; 
for i = 1:length(r1(:,1)) 
    if (r1(i,1) < tr) 
        r1numErr = r1numErr + 1; 
    end 
    if (r2(i,1) > tr) 
        r2numErr = r2numErr + 1; 



    end 
end 

  
r1perr = r1numErr/1e3 
r2perr = r2numErr/1e3 

  

  
%% Q4 
clear; 
clc; 
clf; 

  
mu1 = [-1 1]; 
mu2 = [1 1]; 

  
sigmax = .1; 
sigmay = 1; 
covar1 = [sigmax 0;0 sigmay]; 
covar2 = [1 0;0 1]; 
x1 = -5:.2:5; x2 = -3:.2:4; 
[X1,X2] = meshgrid(x1,x2); 

  
GRV1 = mvnpdf([X1(:) X2(:)],mu1,covar1); 
GRV1 = reshape(GRV1,length(x2),length(x1)); 

  
GRV2 = mvnpdf([X1(:) X2(:)],mu2,covar2); 
GRV2 = reshape(GRV2,length(x2),length(x1)); 

  
% figure(1); 
% surf(x1,x2,GRV1); 
% hold on; 
% surf(x1,x2,GRV2); 

  
figure(2); 
contour(x1,x2,GRV1); 
hold on; 
contour(x1,x2,GRV2); 

 


