
Brian Thibodeau ECE8527 HW NO.1

In maximum likelihood decoding, the probability of error (p(error)) is computed by comparing a given

observation to a threshold. In the first analysis of this homework, 10,000 random data points were generated

from two Gaussian random variables (𝐺𝑅𝑉(𝜇, 𝜎2)) and the probability of error was computed using a

simple Matlab script. These results were compared to the analytical probability of error and are listed in

Tables I and II respectively for 𝐺𝑅𝑉(1,1) and 𝐺𝑅𝑉(−1,1).

Table I. Probability of Error for GRV(1,1)

GRV(1,1)

Threshold p(error)sim p(error)analytical

0 0.157 0.1586

-0.5 0.066 0.0668

0.5 0.31 0.3085

Table II. Probability of Error for GRV(-1,1)

GRV(-1,1)

Threshold p(error)sim p(error)analytical

0 0.157 0.1586

-0.5 0.31 0.3085

0.5 0.066 0.0668

Given that the means of GRV(1,1) and GRV(-1,1) are equidistant from the first threshold of 0, it makes

sense that their p(error) are identical (See Tables I and II). Similarly because of symmetry, the p(error) for

GRV(1,1) and GRV(-1,1) with threshold of -0.5 and 0.5 have opposite values for p(error) with respect to

each other. These results are confirmed when they are compared to the analytical results for the p(error).

Note that the analytical p(error) was computed numerically in Matlab by integrating the standard equation

for a normal distribution. The limits of integration for each error was between the threshold and 3 standard

deviations. Ideally we would integrate to infinity (or from infinity depending on the distribution under

consideration), but since 99% of the area under the distribution is within 3 standard deviations, we can

achieve an accurate approximation by integrating to 3 standard deviations (or from 3 standard deviations).

The next question that arises is what happens to the error rate as the variance of the normal distribution is

changed. By considering the distributions GRV(1,1) and GRV(-1,1) with a threshold of 0, Intuitevly, we

would expect the error to be directly proportional to the variance because as the variance decresease, the

distribution curve gets more narrow. Thus the amount of area that exceeds the threshold is reduced thereby

reducing the p(error). Figure 1, confirms this intution by plotting the p(error) for a normal distribution with

a mean of 1 and a threshold of 0 as a function of the variance. 100,000 data points were genereated and

compared to the threshold to produce a smooth curve. The variance was varied from 0 to 5 with interval

spacings of 0.1.

From Figure 5, we observe that the p(error) takes a sharp increase when the variance starts to exceeds 0.3.

The reason is justified by recgonizing that the distance between the mean of the normal distribution and the

threshold is 1 (mean = 1, threshold = 0). As was mentioned before, 99% of the area is within three standard

deviations. if we take the distance between the mean and threshold and divide by three, we find that the

maximum standard deviation before crossing the threshold is 1/3. Squaring this results in a variance of 1/9

= 0.1111. Thus when the variance exceeds 0.1111, the p(error) starts increasing in accordance with the

exponetional nature of the normal distribution.

Figure 1. p(error) as a function of variance for GRV(1,1).

Now we consider a two dimensional (2D) normal distribution. We will present the same analysis for the

2D case as we did for the 1D case excepts that the tools used for analysis differ to account for the added

dimension. Adding a second dimension is like adding another classifier for decision pruposes. An example

of classifiers could be the length and lightness used for deciding whether a fish is a sea bass and salmon.

Figure 1 depicts two 2D normal distrubtions with means of [-1 1] for GRV1 and [1 1] for GRV2. Both

distributions have an identity covariance matrix.

Figure 2. 2D normal distributions with identity covariance matrices and means of [-1 1] and [1 1] respectivly.

Again we computed the p(error) for each 2D distribution when the threshold was -0.5, 0, and 0.5. For this

analysis, 1000 data points were generated from each distribution. The distribution of data points are

illustrated in Figure 3.

Figure 3. 1,000 normally distributed data points for each of the 2D GRV

Interestingly enough, when the p(error) for a multivariate normal random variable is computed, the results

are similar to the univariate case in the 1D analysis. Comparing Tables III to I and IV to II, we find almost

identical results.

Table III

2D GRV([1 1], [1 0; 0 1])

Threshold p(error)sim

0 0.154

-0.5 0.062

0.5 0.307

Table IV.

2D GRV([-1 1], [1 0; 0 1])

Threshold p(error)sim

0 0.159

-0.5 0.31

0.5 0.063

When the decision threshold is zero along the x-axis, the p(error) for each distribution is approximately the

same and when the decision thresholds are -0.5 and 0.5, the distributions p(error) are opposite each other’s.

Again this is the result of symmetry amongst the means and covariance’s.

In our final analysis, we varied the covariance matrix of one normal distribution and compared it to the

other to see how it effects the shape of the support region. In Matlab, we can generate a support region by

plotting a contour plot of the distribution. Each contour line represents a constant probability.

Figure 4. Support regions for two normal distributions with identity covariance matrices.

Figure 5. Support regions for two normal distributions with GRV1 having a covariance matrix of [.1 0; 0 1]

and GRV2 having and identity covariance matrix

Figure 6. Support regions for two normal distributions with GRV1 having a covariance matrix of [1 0.75; 0.75

1] and GRV2 having and identity covariance matrix

Figures 4-6 illustrate how changing the covariance matrix results in a support region with a different shape.

Mathematically, the covariance matrix is represented as follows:

𝐶𝑂𝑉𝐴𝑅 = [
𝜎𝑥
2 𝜎𝑥𝑦

𝜎𝑦𝑥 𝜎𝑦
2] (1)

Thus from equation (1) we can adjust how wide or narrow the support region is by adjusting 𝜎𝑥
2 or 𝜎𝑦

2 or

we can rotate the support by adjusting 𝜎𝑦𝑥 and 𝜎𝑥𝑦. However, it’s important to note that the covariance

matrix must be a square, symmetric positive definite matrix.

In Figure 4, the covariance matrices for each distribution are an identity matrix. The result is a 2D normal

distribution with equal variance in all direction form the mean. In Figure 5 though, the covariance matrix

of GRV1 is [.1 0; 0 1]. The variance of the classifier, x1 was reduced from 1 to 0.1 resulting in a narrower

distribution along the x-axis and a reduced p(error). Finally, Figure 5, illustrates a rotated support region.

This is accomplished by adjusting the off diagonal elements of equation (1). The covariance matrix in

Figure 5 was [1 0.75;0.75 1]. The larger the off diagonal elements, the larger the rotation.

clear;
clc;
clf;
%
% Brian Thibodeau
% ECE 8527: Machine Learning
% HW NO. 1: Gaussian Distributions and
% Maximum likelihood Decoding
%
%
% Q1
x1 = normrnd(1,1,1,10e3);
x2 = normrnd(-1,1,1,10e3);

tr = 0;

x1_count_c1 = 0;
x1_count_c2 = 0;
x2_count_c1 = 0;
x2_count_c2 = 0;

for j = 1:length(x1)
 if (x1(j) > tr)
 x1_count_c1 = x1_count_c1 + 1;
 end
 if (x1(j) < tr)
 x1_count_c2 = x1_count_c2 + 1;
 end

 if (x2(j) > tr)
 x2_count_c1 = x2_count_c1 + 1;
 end
 if (x2(j) < tr)
 x2_count_c2 = x2_count_c2 + 1;
 end

end

perr_x1 = x1_count_c2/length(x1);
perr_x2 = x2_count_c1/length(x2);

syms x;
mu1 = -1;
sigma = 1;
rv = 1/sqrt(2*pi*sigma)*exp(-1/2*((x-mu1)^2/sigma));
double(int(rv,x,tr,3*sigma))
%% Q2
clear;
clc;
clf;

var = 0:0.1:5;
mu1 = 1;
tr = 0;
for i = 1:length(var)
 x1 = normrnd(mu1,var(i),1,1e6);
 errCnt = 0;
 for j = 1:length(x1)
 if (x1(j) < tr)
 errCnt = errCnt+ 1;
 end
 end
 perr(i) = errCnt/length(x1);
end
plot(var,perr);
xlabel('Variance');
ylabel('p(error)');
%% Q3
clear;
clc;
clf;

tr = 0.5;

mu1 = [1 1];
mu2 = [-1 1];
sigma1 = [1 0;0 1];
sigma2 = [1 0;0 1];
r1 = mvnrnd(mu1,sigma1,1e3);
r2 = mvnrnd(mu2,sigma2,1e3);
plot(r1(:,1),r1(:,2),'+',r2(:,1),r2(:,2),'+');
xlabel('x data');
ylabel('y data');
legend('2D GRV(1,1)','2D GRV(-1,1)');
r1numErr = 0;
r2numErr = 0;
for i = 1:length(r1(:,1))
 if (r1(i,1) < tr)
 r1numErr = r1numErr + 1;
 end
 if (r2(i,1) > tr)
 r2numErr = r2numErr + 1;

 end
end

r1perr = r1numErr/1e3
r2perr = r2numErr/1e3

%% Q4
clear;
clc;
clf;

mu1 = [-1 1];
mu2 = [1 1];

sigmax = .1;
sigmay = 1;
covar1 = [sigmax 0;0 sigmay];
covar2 = [1 0;0 1];
x1 = -5:.2:5; x2 = -3:.2:4;
[X1,X2] = meshgrid(x1,x2);

GRV1 = mvnpdf([X1(:) X2(:)],mu1,covar1);
GRV1 = reshape(GRV1,length(x2),length(x1));

GRV2 = mvnpdf([X1(:) X2(:)],mu2,covar2);
GRV2 = reshape(GRV2,length(x2),length(x1));

% figure(1);
% surf(x1,x2,GRV1);
% hold on;
% surf(x1,x2,GRV2);

figure(2);
contour(x1,x2,GRV1);
hold on;
contour(x1,x2,GRV2);

