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1 Introduction

Homework 1 of ECE 8527 deals with data generated as gaussian (normal) distributions and
decoding error rates as maximum likelihood estimates. Gaussian distributions, whose probability
density function (PDF) is shown in Equation 1, is applied in many practical applications due to
the central limit theorem, which states a large set of random variates with unknown distributions
will tend to a normal distribution so long as the random variates’ means and variances are finite
[3]. Random variates are particular outcomes to a random variable. The particular outcomes of
this homework assignment are the data sets generated in MATLAB.

f(x, µ, σ) =
1√
2πσ2

e−
(x−µ)2

2σ2 (1)

The goal of maximum likelihood estimation is to determine the value(s) of one or more parameters
(such as mean or error rate) that makes a particular set of data the most likely to occur. Finding
the values can be found through a likelihood function which maps the possible values of one
or more parameters for a particular set of data to the likelihood of the particular set of data
occurring [2]. The value(s) that maximize the likelihood function are the maximum likelihood
estimates of the parameter(s).

The tasks of the homework are broken down into 4 problems. Problem 1 involves the generation
of two equally sized, gaussian distributed data sets with same variance but differing means and
then determining an error rate based on the data sets, using an optimal maximum likelihood
decoder. Problem 2 involves the creation of two sets of gaussian distributed data and then
mapping how the error rate changes with respect to the data sets’ variance. Problem 3 involves
the generation of two two-dimensional multivariate gaussian distributed data sets whose mean
vectors covariance matrices are identity matrices and then again determining an error rate, using
an optimal maximum likelihood decoder. Finally, Problem 4 involves demonstrating how the
support region of the first multivariate data set from Problem 3 changes when manipulating its
covariance matrix.

2 Discussion

2.1 Problem 1

The goal of Problem 1 is to determine the theoretical error rate of a statistical model and then
determine the error rate, using maximum likelihood estimation. The statistical model consists
of two one-dimensional data sets of 10,000 data points. Both data sets are gaussian distributed
with variances equal to 1. The first data set has a mean of 1 and the second data set has a
mean of -1. The thresholds necessary for decoding which data set to which each data point
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belongs are 0, 0.5, and -0.5. Data sets one and two are respectively referred to as ω1 and ω2.
Each data point (i.e. the feature) is a continuous random variable symbolically referred to as
x. The possible error rates are represented by the random variable θ. The maximum likelihood
estimate of the error rate is θ̂. It is assumed the thresholds given for Problem 1 are really the
priors P (ω1) and P (ω2). A threshold of zero would imply both priors are 0.5. A threshold of .5
would imply P (ω1) = 0.6225 and P (ω2) = 0.3775. A threshold of -.5 would simply flip the priors.

First, the error rate is obtained through a theoretical prediction and then finally obtained by a
maximum likelihood estimate.

2.1.1 Theoretical Prediction

The probability of error given each data point is always Equation 2, which, for the two class
case, simply states the probability of error is the probability that the data set decoded is from
the opposite data set.

P (error|x) =

{
P (ω2|x) x ∈ ω1

P (ω1|x) x ∈ ω2

(2)

In the context of this problem, the probability of error is simply the areas beneath each data
set’s gaussian PDF that fall into the wrong side of the thresholds. Figure 1 graphically shows
where the two erroneous areas are beneath each data set’s PDF.

Figure 1: Gray area to the left of the threshold corresponds to P (ω2|x) x ∈ ω1, whereas to the
right of the threshold corresponds to P (ω1|x) x ∈ ω2

Averaging together the two erroneous areas shown in Figure 1 results in the average probability
of error, which is the theoretically error rate. Instead of performing calculations by hand, a
MATLAB script is written to perform the necessary calculations, as shown in Listing 1.

1 % prediction (the parameters are known)
change = .002;

3 domain = -10:change:10;
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errorRate = @(threshold)(sum(normpdf([-10:change:threshold], 1, 1))+ ...
5 sum(normpdf([threshold:change:10], -1, 1)))*change/2;
printErrorRate = @(threshold)disp(char(['threshold : ' num2str(threshold)], ...

7 ['Error rate: ' num2str(errorRate(threshold))]));
disp('Predicted error rates');

9 printErrorRate(threshold1);
printErrorRate(threshold2);

11 printErrorRate(threshold3);

Listing 1: MATLAB script for determining theoretical results

The theoretical error rates produced from each threshold are shown in Listing 2.

1 Problem 1

3 Predicted Error Rates
threshold : 0

5 Error rate: 0.1589
threshold : 0.5

7 Error rate: 0.18791
threshold : -0.5

9 Error rate: 0.18791

Listing 2: Theoretical results

2.1.2 Maximum Likelihood Estimation

In order to perform maximum likelihood estimation, there are number of assumptions made.
The reasons for the assumptions are made clear throughout this section.

The first assumption is that the total number of correctly decoded data points, symbolically
referred to as c, and the total number of decoded data points, symbolically referred to as t, are
allowed to be used for generating the estimates. Threshold decoding is used to determine what
these values are (Listing 3).

1 % create two 1 dimensional gaussian random variables
createGrv = @(mean, variance, length)randn(length,1)*sqrt(variance)+mean;

3 n = 10e3;

5 % the data (omega1 and omega2, respectively)
% together, grv1 and grv2 have 2*n = t random data points

7 grv1 = createGrv(1, 1, n);
grv2 = createGrv(-1, 1, n);

9

% thresholds
11 threshold1 = 0;

threshold2 = .5;
13 threshold3 = -.5;

15 ...

17 % anonymous function used for generating the number of correctly
% decoded data points

19 correct = @(threshold)sum(grv1 > threshold)+sum(grv2 < threshold);

Listing 3: MATLAB script for determining c and t

The second assumption is the statistical model can be interpreted as a binary symmetric channel
(BSC), a common communications model in which a binary message, typically either a 02 or a
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12, is transmitted at one end of the channel and then received at the other. There is a probability
the received message can be decoded incorrectly as the opposite bit. The probability the message
is incorrectly decoded is the crossover probability p [1]. In the context of Problem 1, ω1 and ω2

are 02 and 12, respectively. The crossover probability p is the error rate.

Figure 2

The distribution of the combined data sets is conveniently assumed binomial to follow the BSC
interpretation of the statistical model. The probability mass function (PMF) of a binomial
distribution is shown in Equation 3. Equation 3 is modified to incorporate the parameters
mentioned for solving for the maximum likelihood estimation of the error rate.(

t

c

)
(1− p)cp(n−c) (3)

L(θ|D) =

(
t

c

)
(1− θ)cθ(n−c) (4)

Since the error rate is estimated and the data is given, Equation 3 is rewritten as the likelihood
function needed for getting the estimated error rate, as shown in Equation 4. Listing 4 shows
how the likelihood function is generated in MATLAB. The MATLAB implementation of the
likelihood function is actually a function of 1− θ.

1 % generate the possible probabilities
probabilities = 0:.002:1;

3

% recall, grv1 and grv2 are the data sets
5 correct = @(threshold)sum(grv1 > threshold)+sum(grv2 < threshold);

7 % this anonymous function is used to generate the number of correctly decoded
% data points for each threshold

9 generateLikelihood = @(threshold)binopdf(correct(threshold), 2*n, probabilities);

Listing 4: MATLAB script for generating the likelihood function

Plotting the likelihood functions for the three thresholds generates the plots shown in Figure 3.
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Figure 3: Likelihood Functions. The MATLAB Datatips indicate what the maximums are.

As the final step, the 1 − θ̂, the 1 − θ that maximizes Equation 4, for each threshold are
converted to θ̂, the estimated error rates shown in Listing 5. These error rates are not precise
as the theoretical error rates, but are fairly close.

1 Estimated Error rates
threshold : 0

3 Error rate: 0.16
threshold : 0.5

5 Error rate: 0.188
threshold : -0.5

7 Error rate: 0.19

Listing 5: Estimated Results

2.2 Problem 2

The goal of Problem 2 is to plot how the error rate of a statistical model changes as the variance
of the data sets changes within the range 0.1 and 2. The two data sets always have 1,000 data
points each and have a gaussian distribution. One data set always has a mean of 1, whereas
the other has a mean of -1. The priors for both data sets are assumed to be 0.5, thus the
discriminant function is simply Equation 5.

g1(x)− g2(x) = 2x (5)

As shown in Listing 6, discriminant function is encoded as a threshold set to zero.

1 % an anonymous function for easily generating gaussian distributions
createGrv = @(mean, variance, length)randn(length,1)*sqrt(variance)+mean;

3

% the size of each distribution
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5 n = 1e3;

7 % the anonymous that generates the error rates are generated
errorRate = @(variance)(sum(createGrv(1, variance, n) < 0)+ ...

9 sum(createGrv(-1, variance, n) > 0))/ ...
(2*n);

11

% the range of variances
13 variances = .1:.1:2;

15 % finally the error rates are generated
errorRates = errorRate(variances);

Listing 6: MATLAB script for generating the error rates

Figure 4 is the plot of how the error rate changes with respect to the variance.

Figure 4: Error rate versus variancep

2.3 Problem 3

For Problem 3, the theoretical and estimated error rate is computed for another two-class
problem but with two-dimensional multivariate data sets, ω1 and ω2. Both data sets have a
covariance matrix

∑
equal to the identity matrix. ω1 has a mean vector of µ1 = [−1, 1]T ,

whereas ω2 has a mean vector of µ2 = [1, 1]T . x in the context of Problem 3 refers to data
(column) vectors since the two-dimensional data sets are aggregations are vectors, instead of
one-dimensional points. The number of data vectors per data set is chosen as 10,000 data
vectors. Listing 7 shows how the data sets are created in MATLAB.

% n is the number of data vectors per multivariate normally
2 % distributed data sets
n = 10e3;

4

% this anonymous function generates the two dimensional data
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6 createGrv = @(mean, variance)mvnrnd(mean, variance, n);

8 % the parameters are established (mean vector / covariance matrix)
meanVector1 = [-1 1]'; covarianceMatrix1 = [1 0; 0 1];

10 meanVector2 = [1 1]'; covarianceMatrix2 = eye(2);

12 % finally the data is created (grv1 and grv2 are omega1 and
% omega2, respectively)

14 grv1 = createGrv(meanVector1, covarianceMatrix1)';
grv2 = createGrv(meanVector2, covarianceMatrix2)';

16

% priors
18 prior1 = .5; prior2 = .5;

Listing 7: MATLAB script for generating the data sets ω1 and ω2

The discriminant function for decoding each data vector x is shown in Equation 6. The 0 in the
discriminant function’s vector [2, 0]T causes the second element of the discriminant function to
always result in 0. Therefore, it is same to assume the second element in any data vector has
no impact on whether ω1 or ω2 is decided. A closer examination also reveals the discriminant
function in Equation 6 effectively becomes the discriminant function shown in Equation 5; the
multivariate two-class problem can be considered a one dimensional two-class problem with an
extra, trivial dimension.

g1(x)− g2(x) = [2, 0]x (6)

2.3.1 Theoretical Prediction

Considering the observation last stated in Section 2.3, the theoretical error rate calculated in
Problem for a threshold of 0 is adopted as the threshold for Problem 3.

Problem 3
2

Predicted Error Rate
4 threshold : 0
Error rate: 0.1589

Listing 8: Theoretical results

2.3.2 Maximum Likelihood Estimation

The estimated error rate θ̂ is solved the same way as the estimated errors for Problem 1. First the
discriminant function is implemented as an anonymous function from the data sets’ the priors,
covariance matrices, and mean vectors. The general case gaussian classifiers is implemented
for the purpose of experimenting with the data sets’ parameters. Listing 9 shows how the
discriminate function is implemented and utilized as MATLAB script.

1 % The discriminant function is a quadratic equation whose constants
% A, b, and c and defined as follows for gaussian classifiers

3 A = 1/2*(covarianceMatrix2^(-1)-covarianceMatrix1^(-1));
b = covarianceMatrix1^(-1)*meanVector1-covarianceMatrix2^(-1)*meanVector2;

5 c = 1/2*(meanVector2'*covarianceMatrix2^(-1)*meanVector2 - ...
meanVector1'*covarianceMatrix1^(-1)*meanVector1) + log(prior1/prior2) - ...

7 1/2*logm(abs(covarianceMatrix1)/abs(covarianceMatrix2));

9 % this anonymous function is the discriminant function itself
g = @(x)x'*A*x+b'*x+c; % discriminant function
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11

% these vectors together bin the results from the discriminant function
13 % for each data vector, however g1 are the results generated from the

% data vectors of grv1 and g2 are the results generated from the data
15 % vectors generated from the grv2

g1 = zeros(1, n); % positive values indicate correct decoding!
17 g2 = zeros(1, n); % negative values indicate correct decoding!

for i = 1:n
19 temp = g(grv1(:,i));

g1(i) = temp(1);
21 temp = g(grv2(:,i));

g2(i) = temp(1);
23 end

Listing 9: MATLAB script for implementing discriminant function

The binomial PMF representing the total data’s distribution is generated as the statistical
model’s likelihood function. Listing 10 shows the MATLAB code that generates the likelihood
functions, and Figure 5 shows the plot of the likelihood function changing with respect to 1−θ.

1 % the domain
probabilities = 0:.002:1;

3

% the number of correctly decoded data vectors are summed
5 correct = sum(g2 < 0) + sum(g1 > 0);

7 % the likelihood is finally generated
likelihood = binopdf(correct, 2*n, probabilities);

Listing 10: MATLAB script for generating the likelihood function

Figure 5: Likelihood Function. The MATLAB Datatip indicates what the maximum is.

The estimated error rate is finally determined as the following.
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Estimated Error rate
2 Error rate: 0.162

Listing 11: Estimated Results

2.4 Problem 4

Problem 4 simply shows how the support region of the first multivariate data set from Problem
3 changes when its covariance matrices is modified. For each figure showing a support region,
the corresponding covariance matrix precedes.

Figure 6

Figure 7
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Figure 8

Figure 9
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Figure 10

3 Appendix

3.1 MATLAB script

% clear everything
2 close all;

4 %% Problem 1
% clear workspace

6 clear all;

8 % display problem 1
disp('Problem 1');

10 disp(' ');

12 % create two 1 dimensional gaussian random variables
createGrv = @(mean, variance, length)randn(length,1)*sqrt(variance)+mean;

14 n = 10e3;

16 % the data
grv1 = createGrv(1, 1, n);

18 grv2 = createGrv(-1, 1, n);

20 % thresholds
threshold1 = 0;

22 threshold2 = .5;
threshold3 = -.5;

24

% prediction (the parameters are known)
26 change = .002;

domain = -10:change:10;
28 errorRate = @(threshold)(sum(normpdf([-10:change:threshold], 1, 1))+ ...

sum(normpdf([threshold:change:10], -1, 1)))*change/2;
30 printErrorRate = @(threshold)disp(char(['threshold : ' num2str(threshold)], ...

['Error rate: ' num2str(errorRate(threshold))]));
32 disp('Predicted error rates');

printErrorRate(threshold1);
34 printErrorRate(threshold2);
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printErrorRate(threshold3);
36 disp(' ');

38 % plot figures
figure();

40 hold on
plot(domain, normpdf(domain, 1, 1), 'g');

42 plot(domain, normpdf(domain, -1, 1), 'b');
plot(0*ones(1, 20), linspace(.4, 0, 20), 'k');

44 hold off
title('Data sets'' pdfs');

46

48 % maximum likelihood estimation
% source1: http://statgen.iop.kcl.ac.uk/bgim/mle/sslike_5.html

50 % source2: http://www.gaussianwaves.com/2010/01/maximum-likelihood-estimation-2/
probabilities = 0:change:1;

52 correct = @(threshold)sum(grv1 > threshold)+sum(grv2 < threshold);
generateLikelihood = @(threshold)binopdf(correct(threshold), 2*n, probabilities);

54

% plot
56 figure();

hold on
58 plot(probabilities, generateLikelihood(threshold1), 'g');

plot(probabilities, generateLikelihood(threshold2), 'b');
60 plot(probabilities, generateLikelihood(threshold3), 'c');

hold off
62 title('Maximum Likelihood Estimation');

xlabel('probability of correct');
64 ylabel('Likelihood');

66 % get error rates
[~,errorIndex] = max(generateLikelihood(threshold1));

68 errorRate1 = 1-probabilities(errorIndex);
[~,errorIndex] = max(generateLikelihood(threshold2));

70 errorRate2 = 1-probabilities(errorIndex);
[~,errorIndex] = max(generateLikelihood(threshold3));

72 errorRate3 = 1-probabilities(errorIndex);

74 disp('Estimated error rates');
printErrorRate = @(threshold, errorRate)disp(char(['threshold : ' ...

76 num2str(threshold)], ['Error rate: ' num2str(errorRate)]));
printErrorRate(threshold1, errorRate1);

78 printErrorRate(threshold2, errorRate2);
printErrorRate(threshold3, errorRate3);

80 disp(' ');

82 %% Problem 2
% clear workspace

84 clear all;

86 % create data
createGrv = @(mean, variance, length)randn(length,1)*sqrt(variance)+mean;

88 n = 1e3;
errorRate = @(variance)(sum(createGrv(1, variance, n) < 0)+ ...

90 sum(createGrv(-1, variance, n) > 0))/ ...
(2*n);

92 variances = .1:.1:2;
errorRates = errorRate(variances);

94

% create figure
96 figure();

plot(variances, errorRates);
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98 title('Problem 2: Error rate versus variance');
ylabel('Error rate');

100 xlabel('Variance');

102 %% Problem 3

104 % clear workspace
clear all;

106

% display problem 3
108 disp('Problem 3');

disp(' ');
110

% create the data
112 n = 10e3;

createGrv = @(mean, variance)mvnrnd(mean, variance, n);
114 meanVector1 = [-1 1]'; covarianceMatrix1 = [4 2; 2 4];

meanVector2 = [1 1]'; covarianceMatrix2 = eye(2);
116 grv1 = createGrv(meanVector1, covarianceMatrix1)';

grv2 = createGrv(meanVector2, covarianceMatrix2)';
118

% priors
120 prior1 = .5; prior2 = .5;

122 % discriminant function for the general case
A = 1/2*(covarianceMatrix2^(-1)-covarianceMatrix1^(-1));

124 b = covarianceMatrix1^(-1)*meanVector1-covarianceMatrix2^(-1)*meanVector2;
c = 1/2*(meanVector2'*covarianceMatrix2^(-1)*meanVector2 - ...

126 meanVector1'*covarianceMatrix1^(-1)*meanVector1) + log(prior1/prior2) - ...
1/2*logm(abs(covarianceMatrix1)/abs(covarianceMatrix2));

128

g = @(x)x'*A*x+b'*x+c; % discriminant function
130 g1 = zeros(1, n); % positive values indicate correct decoding!

g2 = zeros(1, n); % negative values indicate correct decoding!
132 for i = 1:n

temp = g(grv1(:,i));
134 g1(i) = temp(1);

temp = g(grv2(:,i));
136 g2(i) = temp(1);

end
138

% maximum likelihood estimation
140 probabilities = 0:.002:1;

correct = sum(g2 < 0) + sum(g1 > 0);
142 likelihood = binopdf(correct, 2*n, probabilities);

figure();
144 plot(probabilities, likelihood);

title('Problem 3: Maximum Likelihood Estimation');
146 xlabel('probability of correct');

ylabel('Likelihood');
148 [~, maxIndex] = max(likelihood);

disp(['Error rate: ' num2str(1-probabilities(maxIndex))]);
150 disp(' ');

152 %% Problem 4
figure();

154 plot(grv1(1,:), grv1(2,:), '.');
title('Problem 4: support region for grv1');

156 xlabel('grv1(1,:)');
ylabel('grv1(2,:)');

158 xlim([-12 12]);
ylim([-12 12]);
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Listing 12: MATLAB script full
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