
ECG Event Classification using Machine Learning 

Shane McNicholas 

Department of Electrical and Computer Engineering, Temple University 

shane.mcnicholas@temple.edu 

Introduction: This project aims to create two machine-learning systems for predicting heart conditions 

from ECG signals. The ECG data consists of eight channels and can output six classes: 1dAVb, RBBB, 

LBBB, SB, AF, and ST. Recordings are 7.33 seconds long and sampled at 300 Hz. Various machine 

learning techniques will be utilized, including preprocessing steps like normalization and feature 

selection. Adjusting hyperparameters during model training is crucial for performance. Postprocessing of 

model predictions will also be explored for optimization. The paper will detail the project's techniques 

and discuss the chosen models. 

Before incorporating data into a model, it is crucial to clean the data through preprocessing steps. This 

project uses raw signal data, which requires normalization and filtering to remove noise and ensure the 

model is trained on the critical features. Robust scaling is an insensitive normalization algorithm that uses 

features like median and interquartile range to normalize each sample, resulting in most data being centered 

around the mean but keeping outliers. 

Feature selection is a crucial preprocessing step in machine learning, as it plays a crucial role in the model's 

performance. Neural network algorithms can extract features from normalized signal data, but non-neural 

network algorithms may need to reshape the data for more efficient input. After normalization, each channel 

is concatenated onto each other, resulting in a vector with eight times the number of samples in the data. 

Various methodologies are used to extract features from time-series data, but this project opted to keep the 

signal in the time domain and extract statistical features such as mean, standard deviation, minimum and 

maximum amplitude, peak-to-peak range, and power spectral density mean and total power. These features 

aim to have statistical significance to the data and have a relationship with one another and the output labels. 

Algorithm No. 1 Description: This project uses a Random Forest estimator, which uses a set number of 

decision trees to model data. Each tree produces an output, and the outputs are averaged to determine an 

overall prediction. Random Forests don't overfit, but they are heavily dependent on the features provided. 

If features don't correlate enough, they may perform less than ideal. Random Forests also rely on their 

hyperparameters less than neural networks, which can be tuned. Despite this, the hyperparameters are 

unlikely to break the system. Overall, Random Forests is a simple algorithm with competitive performance, 

making it an effective candidate for this project. 

The input to the Random Forest is a feature matrix, seven features long. The data for this project can have 

multi-label outputs, meaning that a single sample can belong to more than one class. The SKLearn Random 

Forest model cannot inherently produce multi-label output. The compromise is to train a Random Forest 

binary classifier for each output label independently of one another. When decoding with the RF, each 

sample will go through the six estimators for each label. Outside of the multi-label output, it is necessary 

to take note of the model's hyperparameters. For this project, all hyperparameters were set to SKLearn's 

default values. However, parameters such as the criterion function and amount of decision trees in a forest 

can affect model performance. For this project, the final parameters for the RF featured a Gini criterion 

function with a hundred decision trees per forest. 

Algorithm No. 2 Description: The second model evaluated during this project is a Multi-Layer Perceptron 

(MLP). An MLP is a basic artificial neural network that can have one or more hidden layers. The model 

begins with an input layer, which, in this project's case, will be eight times the number of samples in a 

recording due to the concatenated signal data chosen for neural networks. The input layer then passes the 



input vectors to the neurons on the hidden layer. Each neuron on the hidden layer is fitted to weight 

backpropagation. Once fitted, the values in the input vector are multiplied by the weights on the hidden 

layer's neurons. This idea continues for every hidden layer in the network until the output layer is reached. 

Unlike Random Forest, the SKLearn MLP can make multi-output predictions that are out of the box. In the 

case of this project, the output layer of the MLP is six neurons, one for each class. Like most neural 

networks, MLPs are very sensitive to their hyperparameters, so they must be appropriately tuned. 

There are plenty of different hyperparameters for SKLearn's MLP API. Most of the time, performances 

tended to be similar despite changing the parameters. However, the parameters did affect how long it took 

for the model to converge. The activation function, which enables complex modeling, was tested at 

"logistic" and "ReLU," where ReLU yielded the best results. Similarly, the fitting optimizer worked best 

with adaptive moment generation (ADAM) rather than any of the other functions. Surprisingly, hidden 

layer architecture did not have a significant impact on the results of the model. Many combinations were 

tried with varying hidden layers and neuron counts, but none stood out. Ultimately, a hidden layer 

architecture of (100, 50, 25, 10) was chosen for simplicity's sake. However, the more neurons in the 

network, the longer the training times were. Other hyperparameters, such as learning rate, are also essential 

to consider. Fortunately, the ADAM optimizer handles many of the user's hyperparameters. 

The postprocessing step of thresholding was added to both systems before decoding to optimize 

performance. This step captures the prediction probabilities of each system, allowing a minimum threshold 

for each label prediction. If the probability exceeds the threshold, the label is present in the sample. The 

thresholds for both systems were tuned independently, with a single threshold used for all labels. The best 

results were achieved with thresholds of 0.55 and 0.15 for the MLP and RF, respectively. 

Results: After tuning, both systems showed modest 

results, with the MLP showing competitive performance on 

the dev/ and eval/sets. Random Forest had the most 

consistent results, losing only 2% accuracy from training 

data to development and evaluation sets. The MLP had 

macro accuracies of over 90% for all three datasets. 

However, the F1 scores were not as impressive as for both 

systems. Random Forest had somewhat consistent macro 

F1 scores, with each set around 40%. The MLP had an F1 

score of 90% for training data but quickly halved when 

decoding unseen data. The RF did not perform nearly as 

well as the MLP. 

Conclusions: The performance of two systems, Random 

Forest and MLP, was impressive due to their simplicity and quick training time. The lack of performance 

in Random Forest is likely due to the selected features, which did not correlate well with each other or 

labels. To improve the performance of RF, a complete analysis of features in the data and extracting the 

ones with the highest statistical significance and correlation is recommended. For MLP, hyperparameter 

tuning and possibly reconfiguring the input layer are suggested. The MLP's performance was likely nearing 

its peak due to its simplicity, but a deeper neural network with different layers and pooling types may be 

necessary for optimal performance. Understanding the data for machine learning is challenging without 

prior knowledge of ECG signals. It is recommended that an engineer and a physician work together to gain 

expertise in exploiting the data. Although the systems can be improved, the results demonstrate the power 

of machine learning in signal processing. 

 Data Set 15 – Macro Accuracy 

Algorithm Train Dev Test Eval 

RF 87.26% 85.76% 85.71% 

MLP 98.89% 90.23% 90.11% 

Table 1. Macro accuracy performance of each algorithm on all 

three subsets. 

 Data Set 15 – Macro F1 Score 

Algorithm Train Dev Test Eval 

RF 44.01% 36.37% 36.26% 

MLP 94.61% 48.20% 48.10% 

Table 2. Macro F1 score performance of each algorithm on all 

three subsets. 


