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Introduction: This study addresses a pathological image classification problem using features
derived from the Discrete Cosine Transform (DCT). The input data consists of 3-channel, 32 × 32
DCT coefficients obtained from patches of the TUH DPATH Breast dataset (v4.0.0). The initial
task involved nine distinct classes, but based on project scoring rules which prioritize specific diag-
nostic categories, the task was reformulated as a 6-way classification problem. Data corresponding
to original classes 1 (‘artf’), 4 (‘susp’), and 7 (‘null’) were filtered out. The remaining rele-
vant classes (original labels 0=‘norm’, 2=‘nneo’, 3=‘infl’, 5=‘dcis’, 6=‘indc’, 8=‘bckg’) were
remapped to labels 0 through 5, respectively, for model training.

The primary evaluation metric for this task is a custom weighted error (WE) designed to heavily
penalize misclassifications among the diagnostically relevant non-background classes. Specifically,
the score is calculated as Score = 0.9 × avg_lbls_err + 0.1 × avg_bckg_err, where avg_lbls_err
is the mean error rate across the remapped classes 0-4, and avg_bckg_err is the error rate for
the remapped background class 5. Minimizing this score was the central objective. This pa-
per compares two distinct approaches: a classical machine learning algorithm, LightGBM, cho-
sen for its effectiveness on tabular data; and a deep learning approach using a Vision Trans-
former (ViT), selected for its state-of-the-art performance on image classification tasks. We detail
the feature engineering, model tuning, and final prediction generation process for both methods.
All experiments utilized the train.csv and dev.csv files provided. For feature normalization,
sklearn.preprocessing.StandardScaler was fit only on the filtered training data features and
subsequently used to transform both the training and development sets. This resulted in 9340
training samples and 5410 development samples after filtering and remapping.

Algorithm No. 1 Description: The non-neural network approach utilized LightGBM with the
DART booster. Feature engineering focused on low-frequency DCT coefficients. The final feature
set was derived by selecting the top-left DCT blocks of size k = (3, 4, 2) for each of the 3 channels,
applying Principal Component Analysis (PCA) retaining ≈99.95% variance, and concatenating the
three DC coefficients (one per channel), resulting in 32 features. Extensive hyperparameter opti-
mization for the 6-class task was performed using Optuna with 3-fold cross-validation over three
phases. This optimized the feature parameters (k, PCA variance), model structural hyperparam-
eters (e.g., num_leaves=24), and class weights (w∗ ≈ [4.1, 2.6, 36.9, 36.5, 19.8, 1.8]). This process
yielded a final cross-validated weighted error of ≈ 42.44%.

Algorithm No. 2 Description: Given the image-based nature of the DCT features, a deep learn-
ing approach using a ViT was explored. Preliminary attempts with MLPs (Multilayer Perceptrons),
basic CNNs (Convolutional Neural Networks), smaller ViT variants (Tiny, Small), ResNets (Resid-
ual Networks) on inverse DCT (IDCT) images, and CNNs on raw coefficients were unsuccessful
(failed convergence or weighted error >≈ 50%). The successful approach involved fine-tuning a
pre-trained vit_base_patch16_224 model from the timm library. Data preparation for the ViT
involved taking the filtered six-class DCT coefficients (size 3 × 32 × 32), transforming them back to
spatial images using the inverse DCT (scipy.fftpack.idctn), scaling the resulting pixel values to
the 0–255 range, resizing the images to 224 × 224 using bicubic interpolation, and finally applying
standard ImageNet mean and standard-deviation normalization.



For training, the model’s classification head was replaced with a new one for six output classes.
Optimization was performed using AdamW with nn.CrossEntropyLoss weighted by class frequencies
in the training set. A cosine annealing learning rate schedule was employed, along with layer-wise
learning rate decay (create_param_groups_lrd function) and DropPath regularization to mitigate
overfitting. Early stopping based on the 90/10 weighted error metric on the development set was
used over a maximum of 40 training epochs. Hyperparameter tuning via Optuna involved two
30-trial sweeps (coarse then fine) to optimize learning_rate, weight_decay, layer_decay, and
drop_path, minimizing the cross-validated weighted error (using an internal stop patience of 8
and the MedianPruner). The best hyperparameters found were learning_rate ≈ 1.98 × 10−4,
weight_decay ≈ 0.0203, layer_decay ≈ 0.859, and drop_path ≈ 0.190, which achieved a best
cross-validated weighted error of 27.56%.

Results: To assess the generalization performance of the final optimized models, a repeated testing
procedure was conducted using 10 independent runs. In each run, the combined train + dev data
was split into 70% for training, 15% for validation, and 15% for testing (stratified by class), with the
test set held out completely. Across these 10 runs, the optimized LightGBM (DART) model achieved a
mean 90/10 weighted error of 41.87%±1.56% (standard deviation) on the test sets. The optimized
ViT-B/16 model achieved a significantly lower mean weighted error of 31.85% ± 1.45% on the test
sets, demonstrating superior accuracy and stability.

For the final submission, models were trained using all samples from the train set, with the dev set
used for early stopping (patience=50 boosting rounds for LightGBM, patience=2 epochs for ViT).
The ViT model underwent an additional fine-tuning epoch on the combined train + dev data.
The LightGBM model achieved 45.06% weighted error on the development set, stopping around
boosting round 352. The ViT-B/16 model achieved 28.80% weighted error on the development set,
converging by epoch 12 before the final fine-tuning step. The 90/10 weighted error achieved on the
three datasets using these final models is reported in the adjacent table.

Data Set
Algorithm train dev eval

DRT (LightGBM) 17.2135% 45.5868% 51.6819%
ViT 14.8427% 28.8026% 35.2692%

Table 1: Final 90/10 weighted error (%) on train, dev, and
eval datasets for both algorithms.

Conclusions: This study compared
classical machine learning (LightGBM)
and deep learning (ViT-B/16) ap-
proaches for classifying pathological
tissue types from 3-channel, 32 × 32
DCT coefficients, optimizing for a
custom 6-class, 90/10 weighted-error
metric. Extensive feature engineering involving selection of low-frequency DCT coefficients, PCA,
and inclusion of DC components, combined with Optuna-based hyperparameter tuning (model
structure, regularization, class weights) resulted in a strong LightGBM (DART booster) baseline
achieving a mean weighted error of approximately 41.9% over 10 independent test sets.

The Vision Transformer approach, which involved reconstructing spatial images via inverse DCT,
leveraging a pre-trained ViT-B/16 model, and applying fine-tuning techniques such as layer-wise
learning-rate decay and Optuna optimization, significantly outperformed the classical method,
achieving a mean weighted error of approximately 31.9% across the same 10 test sets. These
findings underscore the benefit of leveraging powerful pre-trained vision architectures, even when
starting from frequency-domain data, by reconstructing spatial representations. While the opti-
mized LightGBM provided a robust non-neural network benchmark, the fine-tuned Vision Trans-
former demonstrated superior accuracy and stability for this specific image classification task under
the defined evaluation criteria.


