
 Final Project

Mary Auchincloss

Department of Electrical and Computer Engineering, Temple University

Mary.Auchincloss@Temple.edu

Introduction: For our final project in this class, we were provided with labeled ECG and we were asked

to build two systems for classification, one neural network and one non neural network. This ECG data had

eight channels and was labeled for six different health issues. Each channel of an ECG represents the output

from a different lead placed on a specific location

on the patient’s body, the channels all contain

different information. The first task in this

assignment was to read in the data from where it

was stored and convert it from bytes into a usable

form. Once I accomplished this, I decided to plot

a sample of the data for each channel both labeled

health and unhealthy. The plot of channel 0 for a

sample data set is shown in Figure 1. Once I was

confident, I had imported the data correctly and I

was able to see the plots of each channel I

researched what algorithms are most effective for

these types of signals, I decided on Random

Forrest and CNN.

Algorithm No. 1 Description: Random Forrest

For my non neural network implementation I chose to use Random Forrest. To preprocess the data, I added

a convolution on the data before training the model. I did this because in my observations of the plots the

heartbeat peeks seemed to be different for healthy and unhealthy in all channels. I wanted the algorithm to

be able to focus on the peeks during classification. After this preprocessing I used the SciKitLearn RNF

package with 100 estimators to create and train my model. For my HPY files I trained on the entire training

set. After my presentation I was asked to run RNF without the convolution preprocessing since the other

students in the class were able to get better results with RNF without the convolution. Running the standard

RNF implementation without the preprocessing yielded slightly worse results than with the convolution in

my implementation but not as good as the other students results. If I were to continue to work on this project,

I would keep the convolution preprocessing but I would vary the number of estimators and test the different

controllable parameters of SciKitLearns RNF.

Algorithm No. 2 Description: CNN

For my neural network implementation, I chose to use CNN or a convolutional neural network. I chose this

algorithm because it is known for analyzing audio signals well and the

output of an ECG resembles an audio signal. For my model I used 3

convolution layers and 3 non linear layers using Relu and Maxpool. I then

adjusted the loss function to give a higher penalty for guessing 0 when the

truth was 1. I did this because the health issues, or classes, were not evenly

distributed. Figure 2 shows the distribution of the health issues in the

training set. I found that using the standard loss function yielded worse

results because the model would guess 0 far to often. I also had to adjust

the learning rate in the optimizer, it took several attempts before finding the

correct value. I spent many hours on this project and built the aspects of my

model through trial and error. In all I ran around 200 epochs training on just

 Figure 1

Figure 2

the unhealthy training data and around 50-100 final epochs training on the entire training set. I did see my

scores go down slightly with the introduction of the healthy data but after several training rounds the

difference was not too large.

Results: When I was satisfied with both of my implementations I ran them on the full training set. I had

been testing on smaller sections of the

data in an attempt to keep the runtime

down. When both implementations

finished, I was satisfied with the results

from the train and dev sets, I imported

the eval set and generated my HYP files.

I sent these files to Dr. Picone and received my scores. These results are shown in Table 1.

Conclusions: This project was very challenging but also rewarding. I feel it was an excellent way to finish

this class and combined everything that I learned this semester. Given more time I would have spent more

time on the RNF implementation and experimented with the SciKitLearn package more, I also would have

explored other ways of preprocessing the data. For CNN I would have trained more epochs on the full data

set and used those results to fine tune the weights of my loss function. I enjoyed this class a great deal and

feel that I learned a lot.

 Data Set

Algorithm Train Dev Test Eval

RNF 0.9391 / 0.5106 0.9279 / 0.3378 0.9275 / 0.3372

CNN 0.9805 / 0.9035 0.9806 / 0.9034 0.8404 / 0.1728
Table 1. Train, Dev, and Eval macro accuracy and macro F1 for my

implementation of RNF and CNN

