
ECE 8527 Final Exam: EEG Classification and Segmentation 

James Brodovsky 
Department of Mechanical Engineering, Temple University 

jbrodovsky@temple.edu 

Introduction: In this project we were tasked with examining data from an electroencephalogram (EEG). 
An electroencephalogram (EEG) is a non-invasive test that measures and records the electrical activity of 
the brain using electrodes placed on the scalp. The test is painless and does not involve any needles or 
injections. The electrical activity of the brain is produced by the communication between neurons, which 
generate small electrical currents. These currents can be detected by the electrodes on the scalp and 
amplified to create a visual representation of the brain's electrical activity. The electrodes are connected to 
an amplifier that records the electrical activity of the brain and displays it on a computer screen or printed 
paper. The test usually takes about 30 minutes to an hour to complete, and the patient may be asked to 
perform certain tasks, such as closing and opening their eyes or hyperventilating, to elicit specific patterns 
of brain activity. We were tasked with using machine learning techniques to identify such events. The 
dataset provided contained a one-dimensional signal in the form of an (amplitude, time) pair along with a 
set of event labels consisting of a start time, and end time, a duration, and an event classification (zero 
through four with a zero-label considered ‘not an event’ or background noise).  

General Approach: Analyzing this problem, the best way to approach it appeared to be taking it in two 
phases: labeling the individual points and then clustering them together. With a set of (time, amplitude, 
class) points in a given cluster, it would be relatively easy to translate this into an event description that 
included the start and end times with a 
class label. As such, in the training 
phase the raw event descriptions in 
each data file were decoded and the 
class label was applied to each point in 
the timeseries data file. For prediction 
the reverse: the timeseries was first 
labeled point-by-point via the machine 
learning model, then segmented using 
a clustering algorithm, and finally 
encoded into an event description. The 
clustering and encoding method were 
the same throughout. I used DBSCAN to cluster the labeled points. From those clusters, the class label 
mode was used to classify the event and the lowest and highest time values were chosen. 

Classifier 1 – Random Forest: In 
examining the data I found two initial 
insights: first, that there was a clear 
linear trend to some of the amplitudes 
which did not appear to correlate with 
event labels. As such, since there did 
not appear to be any easily discernable 
pattern (as shown in Figure 1) I went 
with a Random Forest classifier as my 
first algorithm. Applying this to the 
whole dataset revealed the second 
problem: that there were significantly more data points labeled as ‘background’ than there were labeled 
events which gave a false impression of success for the classifier. To compensate for this, I ‘normalized’ 

Figure 2: Sample of the training data set. 

Figure 1: DBSCAN clustering example. 



the dataset so that only one-fifth of the training data was background noise. I then retained the classifier on 
this normalized dataset using default random forest parameters from SciKit Learn’s implementation. This 
classifier ended up simply memorizing the normalized training set. I modified the parameters to require a 
minimum leaf size of five and retrained the classifier. This yielded worse results on the normalized training 
set, but better results on the whole set. 

Classifier 2 – CNN: My second algorithm swapped the Random Forest classifier for a Convolutional 
Neural Network. The network was relatively simple and two initial convolutional layers of 4 and 2 filters 
respectively followed by four linear hidden layers and output layer of five corresponding to the number of 
classes. Each of the hidden layers was activated using ReLU activation with a 25% dropout during training, 
with the output layer using a softmax activation. Again the dataset was normalized to contain roughly four-
fifths data points corresponding to labeled classes and one-fifth background noise. This dataset was fed to 
the CNN using a PyTorch data loader which fed the timeseries to the CNN in windows. By feeding in the 
time series at a fixed window interval starting from the first index and proceeding to the last with padding 
on the end, I could use a typical CNN as effectively a timeseries classifier. I decided on 25 seconds after 
examining the duration of the events in the source files. The shortest event appeared to be approximately 
100 seconds. By sampling the time series at a window of 25 I ensured that I would meet the Nyquist rate 
and should avoid accidentally aliasing the event signal. The model was trained using cross entropy loss and 
an Adam optimizer. 

Results: Accuracy was calculated using the provided scoring software. The overall success rate of the 
classifier was calculated using the true positive and false positive rates event types one through four and 
the results are summarized below in Table 1. Overall, the Random Forest Classifier performed well on both 
sets with a success rate of 77.04% and 82.77% on the training and development sets respectively. Both 
results are statistically significant, with z-scores of 86.21 and 44.96.   

The convolutional neural network, however, failed to train. There are two likely causes to this. First, the 
network was being trained on all classes, including the background noise. A five-class cross entropy loss, 
in theory, should be able to recognize the background noise as class zero if trained on the other four classes. 
Second, and more importantly, the network was being trained on periodic chunks of the data where the 
chunk was labeled as the most frequent class in the set. I intended for the size of the sample to only 
encompass one event class (or only have a small minority of other neighboring events) but it appears that a 
better route would have been to instead feed the network the actual segmented events. 

Conclusions: In this project we examined an EEG data set that associated events occurring within it. I 
successfully developed a Random Forest and DBSCAN based machine learning implementation that 
produced reliable results on the dataset. My second method swapped the Random Forest for a Convolutional 
Neural Network classifier. This implementation failed to successfully train, likely due to not being supplied 
enough data.   

 Data Set 
Algorithm Train Dev Test Eval 

Random Forest + 
DBSCAN 77.04% 82.77% TBD 

CNN + DBSCAN N/A  N/A TBD 

Table 1. Results summary, where percentages are the difference 
of means between the true positive rate and false positive rates. 
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