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Introduction: The objective of this task is to apply machine learning techniques for analyzing raw time-
series data, segmenting the data to detect events, and performing classification of each event in a 5-class 
space, including one background class and four classes of events. The training dataset provided for this 
assignment comprises 10,000 signals, with each signal containing essential information. Each training file 
consists of two sections. The first section includes the start and end times, as well as the class values for 
each event. The second section consists of a 1D feature, represented by a series of floating-point numbers, 
that emphasizes the pulses in the signal. The recorded signals are mostly sparse, meaning that a large portion 
of the data in each file is background 
noise, and the events occur sporadically. 
This document examines the application 
of machine learning techniques to 
address segmentation and classification 
problems. More precisely, this paper 
explains two machine learning 
approaches to segment and classify 
events for 2000 signals, where the first 
section of each signal is not included in 
the analysis. 

After analyzing the training data, it 
became apparent that the duration of 
each class pulse is uniform. This makes 
it challenging to draw any assumptions 
about pulse duration. Figure 1 illustrates 
that the duration pulses for all classes are 
identical. Additionally, the meaning of 
each event indicates that there are no 
differences in pulse strength among 
different classes (Figure 2). This means 
that relying solely on pulse duration and 
feature values will not yield useful 
information. I have discovered that there 
is a direct relationship between the 
frequency of the event class and the 
amplitudes observed. Specifically, as the 
frequency of the event class increases, 
there is a corresponding increase in the 
amplitudes observed. I attempted to 
tackle the segmentation problem by 
breaking it down into two parts. The first 
part involved detecting event and non-
event data through binary classification to 
identify the occurrence of events. The 
second part focused on classifying the 
events. 

 
Figure 1. This shows the duration pulses of all classes.  

 
Figure 2. This shows the duration strength of all classes (mean).  



RNF + LSTM: Random Forest is an ensemble learning algorithm that combines multiple decision trees to 
improve the overall predictive accuracy and prevent overfitting. It is a supervised learning method used for 
classification and regression tasks. In a Random Forest, many decision trees are built using a randomly 
selected subset of features and training samples. Each tree makes a prediction, and the final output is the 
average prediction of all the trees. By using a combination of multiple decision trees, Random Forest can 
better capture the complex relationships between features in the data. I used Random Forest (RNF) to 
capture the event/non-event aspect of the approach. Given the training data, the RNF model outputs either 
0 for non-event or 1 for event instances. LSTM (Long Short-Term Memory) is a type of recurrent neural 
network (RNN) that is designed to overcome the limitations of traditional RNNs in capturing long-term 
dependencies in sequential data. The key idea behind LSTM is the use of memory cells, which can 
selectively retain, or discard information based on the current input and previous history. In LSTM, the 
memory cells are controlled by three gates: the input gate, output gate, and forget gate. The input gate 
controls the flow of information into the memory cell, the output gate controls the flow of information out 
of the memory cell, and the forget gate controls the retention or deletion of information from the memory 
cell. By adjusting the weights associated with each gate, the LSTM can learn to selectively retain or discard 
information from the previous time steps, allowing it to effectively model long-term dependencies in the 
data. 

Subsequently, I employed an LSTM model for the second part of the implementation, to capture sequential 
and time-based information using the provided data on events in the training set. Although the minimum 
duration for an event is 9, a window with a size of 40 and a stride of 20 was used to slide over the data due 
to computational limitations. As previously mentioned in the introduction, the data is imbalanced, and I 
attempted several techniques such as under-sampling and oversampling. However, they could alter the 
underlying structure of event occurrence. Ultimately, I defined a lower class-weight for background data to 
influence the loss function. Class weight technique assigns a higher weight to the minority class and a lower 
weight to the majority class during model training, which helps the model to give more importance to the 
minority class and thus, improve its performance on the imbalanced data. 

MLP + LSTM: MLP stands for Multi-Layer Perceptron, which is a feedforward neural network model that 
is widely used in machine learning. It is an artificial neural network that consists of multiple layers of nodes 
or neurons, where each neuron is connected to all the neurons in the previous layer, and the output of each 
neuron is passed through an activation function. The number of neurons in each layer and the number of 
layers in the network are hyperparameters that can be tuned to optimize the model's performance. The MLP 
model is trained using backpropagation, a supervised learning algorithm, to minimize the error between the 
predicted output and the actual output. Similarly, to the RNF approach, MLP was utilized for the initial 
binary classification task. This was done to capture the relationship between features and the event/non-
event classes. Same as the previous approach, LSTM employed for the second part of the method. 

I split the task into two parts: firstly, developing a model capable of distinguishing between background 
noise and the event classes, and secondly, developing a model to classify the events into their respective 
classes. For the first part, I generated input vectors of size 40 with a label of 0 or 1 using the first section of 
the data. Then, I trained MLP and RNF algorithms that are effective at identifying differences in binary 
classification tasks. However, the output data had overlapping events which required post-processing based 
on the previous and future events. For the second part, I utilized LSTM, a model well-suited for time series 
tasks that can learn features independently. I used a window of size 40 and a stride of 20 for sliding over 
the events to generate training data for both approaches. 

Results: To apply the model to sequential datasets, a windowing function was created that slides a 
fixed window (size 40) across the raw datasets with a stride of 20. The resulting windows were 
fed into the binary classifier, and the output was post-processed based on the overlapping outputs. 
The same windowing function was then applied to the predicted events and non-events, and a 



further post-processing step was implemented to account for overlapping outputs and to smooth 
the sequential events based on information such as the smallest length of occurred events being 9. 
Table 1 shows the results. These performances are computed using the following: 

𝑃𝑃 = 𝑎𝑎𝑎𝑎𝑎𝑎[𝑇𝑇𝑇𝑇𝑇𝑇 𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶1 − 𝐶𝐶4] − 𝑎𝑎𝑎𝑎𝑎𝑎[𝐹𝐹𝐹𝐹𝐹𝐹 𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶1 − 𝐶𝐶4] 

Equation 1. The equation for the scoring metric of the classification algorithms. 

Conclusions: This assignment explored the segmentation of a time-series signal and the classification of 
events that occurred within it. A hybrid RNF + LSTM model was utilized, followed by a DNN approach 
using MLP+LSTM. However, due to time constraints and the complexity of the problem, larger window 
sizes and strides were chosen to produce fewer input data and speed up the process. While the RNF model 
could have been made more complex, computational limitations meant that parameter optimization was 
limited to a smaller range. 

 
 Data Set 

Algorithm Train Dev Test Eval 
RNF + LSTM 59.01 66.62% - 
MLP + LSTM 42.99% 42.07% - 

Table 1. The scoring performance for the classifiers based on 
Equation 1 


