
ECE 8527 Introduction to Machine Learning and Pattern Recognition Final Paper  

or:  

How to Not Stick The Landing 

Dakota Vadimsky 

Department of Electrical and Computer Engineering, Temple University 

Dakota.vadimsky@temple.edu 

Introduction: For this final project, we had to use everything we have learned throughout this class to 

construct a classifier that could operate on time-series data which consisted of background data interspersed 

with events of varying amplitude, duration, frequency, and classification. We were intended to determine 

with a high confidence level when events started, ended, and what class out of 4 they belonged to. We were 

given 12,000 training and development files which included these annotations as well as the raw data, and 

an additional 2,000 files of only raw evaluation data. Although we were dealing with time series data, the 

sampling frequency of each file remained consistent at 1 sample/sec, and so I treated these waveforms as 

discrete instead of continuous.  

My first step in trying to solve this problem was to preprocess the data in various ways to try to glean some 

information from it and make it easier to work with. By extracting the comments from each training file, I 

could easily compare the durations and relative position in each waveform of the various events, and then 

by applying the start and stop times of each event to their respective waveform I could find the mean 

amplitude of each event as well. I could also exclude the annotations related to background events to make 

this data easier to read. Next, I could normalize the data to fall between 0 and 1, and smooth it by setting 

the amplitudes of each point in each event to be equal to their mean amplitude. This process essentially 

removed any noise still in the waveform. I also rearranged the data to assign each point not just its time-

series index but also its class. 

Once I preprocessed the data in these ways, I attempted to segment the data using the sliding window 

approach. By using my annotations from before, I found the shortest window length for each file, and used 

that window to segment the waveform and classify each segment based on a majority vote of the 

annotations. I also calculated the mean for each segment as well. The problem I ran in to was that I did not 

know how to use this segmented information to teach a model anything about the data, and so after 

completing the segmentation it eventually sat unused. I had to find another way to try to classify the data.  



Algorithm No. 1 Description: The first method I used to attempt 

to solve this problem was to use Dynamic Time Warping (DTW), 

pictured in Figure 1. DTW uses a dynamic programming 

algorithm to find the best path between two discrete, time-variant 

series. While Euclidean matching can be sufficient when the 

waveforms being compared are the same length, it is not enough 

when the waveforms are of varying length and the events within 

each waveform are possibly translated in one direction or the 

other. To ensure that the algorithm still takes the length of the 

waveform into account, it only looks for the next step of the path 

in a specified radius. This ensures that one waveform in which 

two events are spaced far apart does not get matched to one where 

the same events are grouped tightly together. The algorithm first 

matches the first and last indices of each waveform to each other. 

It then proceeds through the waveforms, finding the minimum 

cost at each step until it reaches the end. 

This algorithm has a time complexity of O(N), which is not 

terrible, but given the sheer size of the training datasets, does 

make the job of matching waveforms excruciatingly slow. 

Reading in the evaluation files one at a time, I compared each to the training files, looking for the waveform 

that had the closest distance. Once this was found, I pulled the event data to see which class each event 

belonged to. Because the datasets were the closest matched by distance, they would have the same number 

of events. By reformatting the evaluation waveform into binary (0 for background noise, 1 for everything 

else), and then finding where the boundaries were between background and significant events, I was able 

to determine when events took place and what classes they belonged to. This process of course assumed 

that the evaluation data would in some way resemble the training data in terms of event placement and 

classification. It also did not allow for the easy calculation of a confidence level, as the comparison was not 

made event-by-event, but rather as an entire waveform. This calculation could theoretically be possible, as 

the distances between the evaluation waveform and all training waveforms could be placed in a Gaussian 

distribution and a confidence level could be attained using the mean and standard deviation of this 

distribution. 

 
Figure 1: Dynamic Time Warping Example 

 



Algorithm No. 2 Description: For my second method, I attempted to classify the event data using an 

LSTM. I tried many different approaches to this, mainly revolving around trying to process the data in a 

way that could allow it to be fed into a neural network. I organized the data from 

the files into rows and then attempted to pad the rows with background event data, 

or truncate rows down to a minimum length, or do both to reach a middle ground. 

I attempted to remove the background so that I could work just on the event data. 

None of my approaches got me anywhere close to even creating a model, let alone 

a working model. 

Results: As of the writing of this paper, I do not have results. My DTW algorithm 

is slowing working through the evaluation datasets. Running a test version on a 

handful of evaluation waveforms using only one folder of the training data showed 

that I could predict within an average of 4 time steps where events started and 

stopped. My assumption is that, once the algorithm has access to the entire training 

dataset, its prediction will be even closer. 

Conclusions: This assignment made very little sense to me the entire time I was 

trying to complete it. I attempted to institute some sort of window sliding method, 

but I had no idea how to use that method to create an actual model that could then 

be used to classify anything. I could not see how the event classes differed from 

each other no matter how I rearranged the data. I even attempted to plot the data 

as an EEG, thinking that would reveal some patterns, but it did not. I thought that 

perhaps the event amplitudes were scaled as a function of their relative position 

in the waveform, seeing that the amplitudes increased over time. But when I 

attempted to scale the events based on this positioning function, they all wound 

up at roughly the same amplitude, again with no discernible patterns among the 

various classes. I tried everything I could imagine to extract some features from the 

events that I could then use to attempt to classify them, but nothing seemed to make 

any sense. I attempted to cluster the waveforms but seeing as how the events did 

not occur at consistent locations or with 

consistent frequency, this seemed to go nowhere. 

The many applications of time-series classifiers 

that I found online all proved fruitless as well. If 

there is any pattern to this data whatsoever, I 

would love to know what it is and how to find it. 

 

 

 

 

 

 

 

  

 Data Set 

Algorithm Train Dev Test Eval 

DTW -- -- -- 

N/A N/A N/A N/A 

Table 1: Current Results 

 

 
 

 
Figure 2: DTW Prediction 
Vs. Actual Event in Raw 
Data 


