
ECE-8527 Final Exam

Richard Sand
Department of Electrical and Computer Engineering, Temple University

richard.sand0001@temple.edu
April 28, 2022

Introduction: We were provided with time-sequence 1D data containing 5 event classifiers. 0 indicates
background noise, and classes 1-4 are signal sources. Three data sets are provided: training (train),
development (dev), and evaluation (eval). Train has 10,000 labeled samples, dev has 2,000 labeled samples,
and eval has 2,000 unlabeled samples. Each sample is of arbitrary duration. For each labeled sample,
metadata is provided for the events that occur within the sample – the label, start, and stop times. No other
information is provided about the nature of the signals. The goal of the project is to classify the eval data.
The deliverables are CSV hypothesis files, one for each sample file, containing the hypothesized event
labels, boundaries, and confidence levels.

Two machine-learning algorithms are implemented, the
first is a non-neural network approach, and the second is
a neural network approach.

A visual inspection of the data via matplotlib showed
series with low levels of background noise combined
with generally square steps of various amplitudes and
durations. The events did not seem to overlap.

To preprocess the data, a lowpass butter filter from
scipy.signal was applied, and the data scaled to
[0,1]. Then, to identify the event boundaries, each time
sample was compared to its previous sample to calculate
the delta. A delta larger than a configurable threshold

percentage was considered the start (if
positive) or end (if negative) of an event.

 After identifying the events, the average
amplitudes of all samples in the event were
taken. The durations and amplitudes were
combined into a 2D array. For the training
and dev data, the labels were attached, and
these 2D arrays were then processed with
the below algorithms. The models were
trained on the training data, and then tuned
to provide best results on the dev data. The
tuned models were then applied to the eval

data and the results recorded as hypothesis files.

Figure 1: Exemplar Raw and Labeled Data

Figure 3: KNN Model

Figure 2: Five Files with Normalized Data

Algorithm No. 1 Description: For algorithm 1, we utilized both K-Nearest Neighbor (KNN) and Random
Forests (RNF) algorithms and compared their results. KNN is a supervised classification algorithm where
Euclidean (or other) distances are used to find the labelled samples that are closest to the evaluation sample.
We used the sklearn class sklearn.neighbors.KNeighborsClassifier for KNN.

RNF is an “ensemble” training method where multiple
decision trees are evaluated and a majority vote taken for
final evaluation. For RNF we used
sklearn.ensemble.RandomForestClassifier. For both
algorithms, we varied a parameter n which represented the
number of neighbors or number of estimators for KNN and
RNF, respectively. We evaluated 1 £ n < 51 with step 2 for
each, measuring the error rates for the train and dev sets.

We selected the RNF model as the better of the two models,
and ran the evaluation data through the model with n that
was optimal for the dev data set.

Algorithm No. 2 Description: Multilayer Perceptron (MLP)

We used the ISIP PyTorch based implementation of Multilayer Perceptron for this assignment. An MLP a
type of feedforward neural network, where each node is connected to all nodes on the next layer. This
implementation uses a network with 3 layers of linear transformation (torch.nn.Linear) with a rectified
linear unit activation function (torch.nn.ReLU, which is y = x for x > 0 and y=0 for x £ 0) and dropout
function between each linear transformation (torch.nn.Dropout). It uses a cross entropy loss function
(torch.nn.CrossEntropyLoss).

Results: First we compared
the KNN and RNF algorithms
to determine the best number
of neighbors or evaluators
tuned to the dev data.

The KNN method was
fractionally better than the
RNF, a statistically
insignificant amount. It
should also be noted that RNF
has an element of randomness
anyway. However, RNF was significantly better than the KNN on the training data. Therefore, we chose to
proceed using the RNF algorithm on the evaluation data.

The MLP was able to process the data
successfully and come up with predictions.
We aggregated all of the training and dev
events into a training and dev csv file. Then
we executed the MLP to create the model
file, and then decoded the training data with the model. Unfortunately, after scoring the training data, the
error rate was extremely high, indicating a flaw in the model. The confusion matrix is shown below:

Conclusions:

 Data Set Notes

Algorithm Train Dev

KNN 0.2366 0.3557
Best training result at n= 3
Best dev result at n= 11

RNF 0.0546 0.3572
Best training result at n= 49
Best dev result at n= 11

Table 1. Describe what I am seeing... Describe what I am seeing... Describe what
I am seeing...

Figure 4: Random Forests Classification

 Data Set
Algorithm Train Dev Test Eval

RNF 5.46% 35.57% ?
MLP % % ?

Table 2: KNN vs RNF Training Results

At this point we concluded that there was no point in
generating the hypothesis for the eval data, since the
implementation clearly could not understand the data
provided. One observation about the hypothesis data
it generated was that none of the predictions were for
class 0. A convoluted neural network (CNN) may
provide better results.

confusion [[0. 93. 0. 0. 0.]
 [0. 1. 0. 0. 25.]
 [0. 1. 0. 0. 21.]
 [0. 0. 0. 0. 23.]
 [0. 1. 0. 0. 35.]]
error rate = 99.5000%

 Figure 5: Confusion Matrix

