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Introduction: We were provided with time-sequence 1D data containing 5 event classifiers. 0 indicates 
background noise, and classes 1-4 are signal sources. Three data sets are provided: training (train), 
development (dev), and evaluation (eval). Train has 10,000 labeled samples, dev has 2,000 labeled samples, 
and eval has 2,000 unlabeled samples. Each sample is of arbitrary duration. For each labeled sample, 
metadata is provided for the events that occur within the sample – the label, start, and stop times. No other 
information is provided about the nature of the signals. The goal of the project is to classify the eval data. 
The deliverables are CSV hypothesis files, one for each sample file, containing the hypothesized event 
labels, boundaries, and confidence levels.  

Two machine-learning algorithms are implemented, the 
first is a non-neural network approach, and the second is 
a neural network approach. 

A visual inspection of the data via matplotlib showed 
series with low levels of background noise combined 
with generally square steps of various amplitudes and 
durations. The events did not seem to overlap. 

To preprocess the data, a lowpass butter filter from 
scipy.signal was applied, and the data scaled to 
[0,1]. Then, to identify the event boundaries, each time 
sample was compared to its previous sample to calculate 
the delta. A delta larger than a configurable threshold 

percentage was considered the start (if 
positive) or end (if negative) of an event.  

 After identifying the events, the average 
amplitudes of all samples in the event were 
taken. The durations and amplitudes were 
combined into a 2D array. For the training 
and dev data, the labels were attached, and 
these 2D arrays were then processed with 
the below algorithms. The models were 
trained on the training data, and then tuned 
to provide best results on the dev data. The 
tuned models were then applied to the eval 

data and the results recorded as hypothesis files. 

 

Figure 1: Exemplar Raw and Labeled Data 

Figure 3: KNN Model 

Figure 2: Five Files with Normalized Data 



Algorithm No. 1 Description: For algorithm 1, we utilized both K-Nearest Neighbor (KNN) and Random 
Forests (RNF) algorithms and compared their results. KNN is a supervised classification algorithm where 
Euclidean (or other) distances are used to find the labelled samples that are closest to the evaluation sample. 
We used the sklearn class sklearn.neighbors.KNeighborsClassifier for KNN.  

RNF is an “ensemble” training method where multiple 
decision trees are evaluated and a majority vote taken for 
final evaluation. For RNF we  used 
sklearn.ensemble.RandomForestClassifier. For both 
algorithms, we varied a parameter n which represented the 
number of neighbors or number of estimators for KNN and 
RNF, respectively. We evaluated 1 £ n < 51 with step 2 for 
each, measuring the error rates for the train and dev sets.  

We selected the RNF model as the better of the two models, 
and ran the evaluation data through the model with n that 
was optimal for the dev data set.  

Algorithm No. 2 Description: Multilayer Perceptron (MLP) 

We used the ISIP PyTorch based implementation of Multilayer Perceptron for this assignment. An MLP a 
type of feedforward neural network, where each node is connected to all nodes on the next layer. This 
implementation uses a network with 3 layers of linear transformation (torch.nn.Linear) with a rectified 
linear unit activation function (torch.nn.ReLU, which is y = x for x > 0 and y=0 for x £ 0) and dropout 
function between each linear transformation (torch.nn.Dropout). It uses a cross entropy loss function 
(torch.nn.CrossEntropyLoss). 

Results: First we compared 
the KNN and RNF algorithms 
to determine the best number 
of neighbors or evaluators 
tuned to the dev data.  

The KNN method was 
fractionally better than the 
RNF, a statistically 
insignificant amount. It 
should also be noted that RNF 
has an element of randomness 
anyway. However, RNF was significantly better than the KNN on the training data. Therefore, we chose to 
proceed using the RNF algorithm on the evaluation data. 

The MLP was able to process the data 
successfully and come up with predictions. 
We aggregated all of the training and dev 
events into a training and dev csv file. Then 
we executed the MLP to create the model 
file, and then decoded the training data with the model. Unfortunately, after scoring the training data, the 
error rate was extremely high, indicating a flaw in the model.  The confusion matrix is shown below: 

Conclusions:  

 Data Set Notes 

Algorithm Train Dev 

KNN 0.2366 0.3557 
Best training result at n= 3 
Best dev result at n= 11 

 

RNF 0.0546 0.3572 
Best training result at n= 49 
Best dev result at n= 11 

 

Table 1. Describe what I am seeing... Describe what I am seeing... Describe what 
I am seeing... 

Figure 4: Random Forests Classification 

 Data Set 
Algorithm Train Dev Test Eval 

RNF 5.46% 35.57% ? 
MLP % % ? 

 

Table 2: KNN vs RNF Training Results 



At this point we concluded that there was no point in 
generating the hypothesis for the eval data, since the 
implementation clearly could not understand the data 
provided. One observation about the hypothesis data 
it generated was that none of the predictions were for 
class 0. A convoluted neural network (CNN) may 
provide better results. 

confusion [[ 0. 93.  0.  0.  0.] 
 [ 0.  1.  0.  0. 25.] 
 [ 0.  1.  0.  0. 21.] 
 [ 0.  0.  0.  0. 23.] 
 [ 0.  1.  0.  0. 35.]] 
error rate  =    99.5000% 

 Figure 5: Confusion Matrix 


