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Introduction: This paper explores the process of solving a classification problem for a one-dimensional 
signal using a machine learning approach. The signal data is provided through a multitude of file captures 
representing independent trials or realizations of this stochastic process. Specifically, there are 2,000 data 
files labeled as evaluation data and represent the critical files that the machine learning implementation will 
ultimately be scored and evaluated on in the assessment of how well it performs. Note that these datasets 
are “blind”, meaning that they do not have any samples within them labeled for events that may arise (i.e. 
the data is completely unknown to a machine learning system and its developer). Now, in order to develop 
a system to detect these events in the first place, there must be known data to match to events as they occur 
in the files. This is the purpose of the “training” (10,000 files provided) and “development” (2,000 files 
provided) dataset. The training dataset is actually employed in the learning aspect and is fed into the 
algorithm for it to develop features (some algorithms), become familiar with the statistical distributions of 
the events, and create decision boundaries. The evaluation data is used sort of like a sample evaluation set, 
but with known labels (i.e. this dataset can be predicted on, 
after training, to get an idea of how performance could turn 
out. 

Each file contains amplitude values of some signal vs. time 
steps. The signal captured has four events that can arise 
within it and that need to be predicted and detected. The 
signals are mostly sparse in the sense that most of the data 
recorded in a given file will be predominantly background 
noise and the events will occur here and there. Note that 
although, prediction only needs to be made on non-
background events (events 1-4), background noise is very 
important to a model when trying to distinguish an event 
from noise and ought to be accounted for in model training 
of each algorithm. 

When tackling this classification problem for the specific 
dataset given, the thought of obtaining more features may 
arise. More features—if distinguishable and statistically 
separated amongst classes/events—means more information 
gathered and more knowledge that a machine learning 
model can apply to better separate classes and more 
accurately make predictions. However, in the case of this 
specific problem, finding features can be a real challenge 
and may require an expertise in certain areas or fields of 
engineering. As an example, see Figure 1, which shows that 
the distributions [and averages (dashed lines)] for the 
statistical moments during each event’s occurrence appears 
to be very similar and overlap much. This was the same case 
when trying to look at frequency content (appeared DC for 
all event occurrences) or when trying time durations of 
events to amplitudes (no correlation; covariance was 0). A 

 
Figure 1. This shows the distributions/histograms 
among the events for their 1st moment (mean), 
2nd moment (variance), and 3rd moment. Note: 
these were taken for each duration of an 
occurrence for an event. 

 



reasonable approach would be to disregard any feature learning and apply an algorithm to the raw 
measurements that is good at learning or discovering features on its own. Two that come to mind are a 
neural network and random forests classification (RNF). In this case, the neural network chosen is a 
Convolutional Neural Network (CNN). 

Random Forests Classification (RNF): A Random Forrest Classifier works by essentially taking data and 
randomly placing samples in decision trees (forests) to ultimately perform several feature classifications in 
each tree before coming to a majority vote on how it is decided the samples collected are best classified. 
The Python library Sklearn has a some nice machine learning functions that can help to build a RNF 
classifier: the function RandomForestClassifier() in conjunction with RandomizedSearchCV and 
GridSearchCV can be used to instantiate the model and optimize its parameters to achieve best possible 
performance. The “Randomized Search” function is nice in that it will apply a grid of parameters and score 
the fit and track the score for the parameter ranges specified. This will avoid doing the search in an 
exhaustive way that can be time consuming. It will instead choose random combinations of parameters and 
track score. Then, after doing that, a more narrow (tight range) can be exhaustively iterated over with “Grid 
Search CV” to ultimately arrive at the best parameters for the model when applied to this particular dataset. 
This is exactly what was done for this problem. 

Convolutional Neural Network (CNN): Convolutional Neural Networks have this concept of hidden 
layers as well as an activation function to ultimately activate (or “fire the neuron”). In the hidden layers, 
weights are applied to the input samples and the samples are propagated through to the outputs. The outputs 
sum all of the incoming weighted samples from each network (think a feature)—and if the sum surpasses 
a threshold or meets some criteria, it will produce an output or prediction. The prediction will get better and 
better as back propagation and gradient descent are performed to optimize the weights and other parameters 
for the model. In the case of a CNN, the weights are applied to a convolutional window that slides across 
the sequential amplitudes (i.e. vs time) and tries to describe the signal as summed impulses over time. 

For CNNs, the Python Library Keras can be utilized. For a CNN, it is just a matter of describing the layers 
in python and then running a fit and evaluation, where the model iterates over the training datasets and 
discovers the best parameters to ultimately work its “loss” function down and accuracy [in prediction] up. 
The layers for the model for this application are described in Figure 2 below. 

Results: For both algorithms described above, the process of fitting the data to a model and tuning 
parameters is described. Now, for actually applying that model to the sequential datasets, a windowing 
function is made that essentially slides a fixed window across the raw datasets and computes the 
probabilities for all of the datapoints that they belong to an event. The greatest number of events that 
produce the highest probabilities in a given time window will classify the first half of the window and the 
window will advance in time and slide by half, using overlapping samples (previous window’s samples). 

# specify CNN Layers 
model = Sequential() 
model.add(Conv1D(filters=64, kernel_size=5, activation='relu',\ 

  input_shape=(n_timesteps,n_features))) 

model.add(Conv1D(filters=64, kernel_size=5,activation='relu’)) 

model.add(Dropout(0.4)) 

model.add(MaxPooling1D(pool_size=2)) 
model.add(Flatten()) 

model.add(Dense(100, activation='relu’)) 
model.add(Dense(n_outputs, activation='softmax’)) 
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) 

 
Figure 2. This snippet of code is the example CNN layer description that was applied for the dataset at hand. Note: this is 
“sequential” data and 1-dimensional (apply 1-D kernel/window size for the convolution). The model also uses some 
“dropout” and “pooling” layer to avoid overfitting and converging to fast to the solution (learn more and avoid local 
optima). 

 



For this dataset, it was found that the smallest duration of any of the events lasted for 10 seconds—and so 
a window size of 10-time steps was chosen for that reason and 5 samples were classified at a time. The 
results for the prediction performance for the CNN algorithm are shown in Error! Reference source not 

found. below. This scoring is computed using the following equation: 

Conclusions: The scoring results for the CNN are provided. The windowing function for that worked 
relatively fast compared to the CNN windowing function. The reason is that the CNN “out-of-the-box” 
algorithm already is set-up to compute an efficient computation on the probabilities for the events given the 
sampled fixed 10 second window. Therefore, each file could simply be partitioned into these 10 second 
overlapping windows and that array of windows could all be passed to the CNN predictor at once. Whereas, 
the RNF algorithm has to rely on sample by sample prediction so it is somewhat tougher to optimize a 
predictor on all of those files to work quickly on all of the data files. Unfortunately, due to a time constraint 
and the complexity of the issue, the scoring numbers for the RNF model are not provided. Though, as a 
comparison, a scoring of accuracy for the evaluation sample formats passed into each algorithm’s predict 
function are given below in Figure 3 (this is the direct output from the modeling and predict code). The 
accuracy in the prediction for the RNF are much less than that for the CNN; therefore, it is not expected 
that the RNF model provide better scoring on the dataset file than that provided by CNN. Now, this is not 
to say the RNF model is fully optimized. 

The RNF model parameters could have been swept for higher ranges; however, in the limited time frame 
for this investigation, it was best to sweep and guess on a smaller range limit of parameters. On top of this, 
the RNF model was trained on 100 random datafiles as this sped things up and considered less memory 
since—unlike the CNN, RNF does not train on fixed windows of time steps. 1000 files were also considered 
in a separate case and this actually showed worse accuracy. 

𝑃 = 𝑎𝑣𝑔[𝑇𝑃𝑅 𝑓𝑜𝑟 𝐶1 − 𝐶4] − 𝑎𝑣𝑔[𝐹𝑃𝑅 𝑓𝑜𝑟 𝐶1 − 𝐶4] 
 
Equation 1. The equation for the scoring metric of the classification algorithms. 

 Data Set 

Algorithm Train Dev Test Eval 

RNF X X X 
CNF 56.38 % 55.09%  

Table 1. This is the scoring performance for the classifiers when 
applied to the datafiles. These are computed from Equation 1. 

 



 

 
RNF Code IN: 

 

# Fit the grid search to the data 

grid_search.fit(xTrain, yTrain) 

grid_search.best_params_ 

 

best_grid = grid_search.best_estimator_ 

 

# evaluate performance on 'optimized' param model 

yPredBest = best_grid.predict(xDev) 

 

best_acc = metrics.accuracy_score(yDev, yPredBest) 

print(f"Accuracy (Optimized Model)={best_acc:.4f}") 
 

RNF Code OUT: 

 

Fitting 3 folds for each of 80 candidates, totalling 240 fits 

 

{'bootstrap': False, 

 'max_depth': 80, 

 'max_features': 'sqrt', 

 'min_samples_leaf': 1, 

 'min_samples_split': 5, 

 'n_estimators': 33} 

 

Accuracy (Optimized Model)=0.4727 

 

 

 

CNN Code IN: 

 

# fit network 

model.fit(trainX, trainY, epochs=10, batch_size=500, verbose=1) 

 

print("Done Training...\n\n") 

 

# evaluate model 

_, accuracy = model.evaluate(devX, devY, batch_size=50, verbose=1) 
 

CNN Code OUT: 

 

Epoch 1/10 

1503/1503 [==============================]- 29s 19ms/step - loss: 0.1715 - accuracy: 0.9383 

Epoch 2/10 

1503/1503 [==============================]- 28s 19ms/step - loss: 0.1363 - accuracy: 0.9412 

Epoch 3/10 

1503/1503 [==============================]- 28s 19ms/step - loss: 0.1345 - accuracy: 0.9413 

Epoch 4/10 

1503/1503 [==============================]- 28s 19ms/step - loss: 0.1340 - accuracy: 0.9413 

Epoch 5/10 

1503/1503 [==============================]- 28s 19ms/step - loss: 0.1335 - accuracy: 0.9415 

Epoch 6/10 

1503/1503 [==============================]- 28s 19ms/step - loss: 0.1332 - accuracy: 0.9417 

Epoch 7/10 

1503/1503 [==============================]- 28s 19ms/step - loss: 0.1330 - accuracy: 0.9417 

Epoch 8/10 

1503/1503 [==============================]- 28s 19ms/step - loss: 0.1330 - accuracy: 0.9418 

Epoch 9/10 

1503/1503 [==============================]- 28s 19ms/step - loss: 0.1327 - accuracy: 0.9415 

Epoch 10/10 

1503/1503 [==============================]- 29s 19ms/step - loss: 0.1326 - accuracy: 0.9417 

Done Training... 

 

 

2902/2902 [==============================]- 6s 2ms/step - loss: 0.1352 - accuracy: 0.9418 

 

Figure 3. Code for Evaluation on the CNN and RNF Models and the output of that code. 
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