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Introduction: The dataset of this experiment represents 1D signals (amplitude vs time). There is total 
10,000 training files, 2,000 dev files and 2,000 blind eval files. Each file contains a combination of 5 types 
of events- class 0 (background) and class 1,2,3,4 (non-background) event. To evaluate the performance on 
eval files data, one neural network and one non-neural network approach is used. Multilayer perceptron 
with three hidden layers is used as a neural network which gives error rate of 5.60% for training data, 5.65% 
for dev data and x% for eval data. As non-neural network, K-Nearest-Neighbors algorithm is used which 
provides error rate of 0.68%, 0% and y% for training, dev and eval data respectively. 

Data Preprocessing: In this project, there are 10,000 training data files. Each of the training data files are 
sequential in nature having five types of events: bckg (class 0), and four non-bckg events (classes 1 - 
4). In this data preprocessing part, each of these sequential files are first segmented using a sliding window 
of length 10. Within a particular window, only one label is assigned based on the majority vote. For a 
particular window, the training data is treated as an observation, and there are multiple observations based 
on the length of sequence of that specific data sequence. These 10 features (because of the window length) 
observations are then fed to machine learning algorithm.  
 
Multilayer Perceptron Approach (MLP): In our dataset, there is no linear relationship between the events 
of the data. MLP is used as neural network, as it can learn the non-linear relation between events and its 
features. MLP consists of three types of layers—the input layer, output layer and hidden layer. The input 
layer receives the input signal to be processed. The required task such as prediction and classification are 
performed by the output layer. An arbitrary number of hidden layers that are placed in between the input 
and output layer are the true computational engine of the MLP. Like a feed forward network in a MLP the 
data flows in the forward direction from input to output layer. The neurons in the MLP are trained with the 
back propagation learning algorithm. MLPs are designed to approximate any continuous function and can 
solve problems which are not linearly separable. In each layer there may have multiple nodes. Each node 
performs some mathematical operation, i.e., multiply the wights associated with the node with the input 
and add a bias term. After that, some nonlinear activation function is used so that it can learn nonlinear 
relationships. After computing the output, the loss between predicted output and actual label is 
backpropagated to the network and optimize the weights of the network by minimizing the overall cost 
function. After the training is completed, the network is expected to predict unknown data with satisfactory 
accuracy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this project, pytorch is used to build the MLP model.  Each 
preprocessed data sequence is considered as a batch size for 
the MLP network. Since there are, 10000 training data files, 
so there will be 10000 batches. And, since each of the 
preprocessed data sequence has 10 features, 10 input node is 
used for this model. Number of hidden layers (3 layers) and 
nodes in each hidden layer (64) are chosen experimentally. 
As nonlinear activation function in the hidden layers, the 
ReLU activation function is used. ReLU activation provides 
a comparatively faster response. For multiclass classification, 
softmax activation is used in the output layer. Dropout 
regularizer is used in the hidden layers for preventing 
overfitting. Since this is a multiclass classification problem, I 
use categorical cross entropy loss function. Adam optimizer 
is used to minimize the overall cost function.   
 

 

Figure 1: Loss vs epochs performance 



From figure 1, it can be noticed that initially there was high loss. But with the increase of epochs, loss is 
minimized. 

K-Nearest-Neighbors (KNN) Approach: KNN is one of the simple and easy to implement algorithm 
compared to other supervised learning algorithm. Its performance is dependent mainly on the number of 
neighbors, K. In this way, it can be considered as a single tuning parametric method.  
 
                                                                                                 
 
 
 
 
 
 
 
 
 
 
 
Results: The result of the above discussed algorithm are summarized in Table 1. 
 

Algorithm Dataset error (%) 
Train Dev Eval 

MLP 5.60 5.65  
KNN 0.68 0  

 
Conclusions: In this project, one neural and one non-neural network have been designed to estimate the 
performance of 1D signal. I could not optimize the training model properly for the KNN approach. So, 
comparison between the approaches could not be compared properly. 
 

 

In a neighbor of K points, the test data will consider K 
nearest points as its neighbors and among them 
dominant samples’ class will be assigned as the 
estimated class for the test data. The number of K is 
selected based on the satisfactory performances of the 
dev and train data. In this experiment K=2 is selected 
experimentally. 
From figure 2, it can be observed that for lower number 
of K error rate is low. And after certain number of 
neighbor value, the performance does not change.   

Figure 2: Change of error rate with K 


