
Signal Processing with Machine Learning

Mehdi Khantan
Department of Electrical and Computer Engineering, Temple University

Khantan.mehdi@temple.edu

Introduction:

Signal processing is involved in many devices we utilize in our daily lives. Voice recognition, health 
monitoring, radar, and wireless communications are some examples of technologies that use various 
methods of signal processing. In modern systems, a dominant part of signal processing is being done with
the help of machine learning techniques. Data mining for signal data could be done by the means of different 
pattern recognition methods, measuring statistical properties of the signals such as mean, variance, 
covariance, and energy of the signal per time step. Furthermore, modern advancements in neural network 
techniques and deep learning, such as convolutional neural networks (CNNs), recurrent neural networks 
(RNNs), and long short-term memory (LSTM) are widely used in data mining from different signals. The 
goal of this assignment is to process rime series by the means of machine learning. Signals need to be 
classified into four different classes (1 to 4). 

In this assignment, three data sets are provided for training, 
development, and evaluation. Start, stop, and class numbers of the 
train and dev data sets are given as annotations and the goal is to 
find the start and stop times of the eval data set and classify the 
data between them to the four given classes. To process the 
signals, we need to dig into the signals and find a way to 
distinguish the differences between classes. As depicted in figure 
1 there are some silence moments in the signal which are 
classified as class 0. Also, there are some pulse-like signals in 
between the silent moments which have been classified into
classes 1 to 4. Pulse lengths are between 10 to 500-time steps and 
each class has been distributed uniformly. The histogram of class 
1 is depicted in figure 2 as an example.

To do this assignment, two approaches have been done. The first one is a classical approach and the second 
one is based on deep learning.

Approach:

To distinguish the classes, three aspects including the start time, 
stop time, and class type of the pulses needed to be found.

Start and stop time of the signals can be easily found by taking 
derivative of the signals. Since there may be some picks in 
derivative for the zero classes in the, it is better to get mean of 
some number of the samples and calculate the derivative over 
them. To make this happen, a sliding window at the size of half 
of the minimum length of the classes which is 10 in these data 
sets has been selected and moved through the whole signal. The 
results were close to the actual start and stop times with a plus-

Figure 1-A sample of signals

Figure 2: Histogram of time duration for class 1



minus of 5 time steps. Making an overlap of 3 time steps on 
the sliding windows helped the accuracy of start and stop 
times. Figure 3 shows the theory behind this assumption. The 
calculation of the threshold for finding the start and stop time 
can be done by means of machine learning techniques. After 
finding the start stop times, the next step is finding the class 
of each pulse. Different features have been tested for these 
signals and the best accuracy had been found in using mean 
and variance of the signals between start, stop times. This also 
reduced the time of processing because the processing was 
done only between the start, stop times and not on the silent 
sections.

KNN Classifier:
K nearest neighborhood was used
to classify the data to four classes. 
Since this algorithm relies on 
distance for classification, and the 
features were in different scales
normalizing the training data 
helped to improve its accuracy 
dramatically. For n=1 the best 

accuracy was found in the train data set, but it was clearly overfitted. The results of the classification on 
dev data set proved the initial assumption on this. KNN with n=5 the results were 22.2% less accurate.

RNF Classifier:
Random Forest classification was also tested on the data sets and the results were 27.20% and 23.60% 
accuracy on the train and dev datasets respectively. To implement this classifier Scikit-learn library of 
python ahs been used. Best results were achieved with 10 number of estimations and maximum depth of 8.

Ridge Classifier:

Ridge classifier is based on the regression which on the first step converts the target values into {-1, 1} and 
then treats the problem as a regression task (multi-output regression in the multiclass case). With this 
classifier the results were 27.6% and 23.70% for train and dev dataset respectively.

MLP Classifier:
Multi-layer Perceptron classifier (MLP) has been used to classify the data by means of neural networks. 
For this classifier three hidden layers were used and the best accuracy occurred with 10, 20, and 88 hidden 
layers for the first to the third hidden layer respectively on 1000 iterations. The accuracy for the train dataset 
was 30.80% and for the dev data set was 24.40%.

Conclusion:
The results show that KNN can work better as a classification for these datasets. Also, another approach 
for these datasets can be convolutional neural network (CNN). An initial trial of using CNN on TensorFlow 
library has been done and results were acceptable. TensorFlow was developed by the Google Brain team 
for internal Google use in research and production and was released under the Apache license in 2015.

Accuracy 
on:

KNN 
n=1

KNN 
n=5

MLP RNF Ridge

Train 61.60% 44.40% 30.80% 27.20% 27.60%

DEV 36.60% 28.80% 24.40% 23.60% 23.70%

Figure 3: Derivative of the signal in figure 1 

Table 1: Results




