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Introduction: The goal of this assignment is to utilize machine learning techniques to parse raw time-series 

data, perform segmentation to find events in the data and perform sequence decoding (seq2seq) by assigning 

each event a value of 0-4. Training annotated data is provided which supplied start-times, end-times, and a 

class value for each file in addition to the raw time-series data 

Upon observing the raw information, it is found that the duration for each class pulse follows a uniform 

distribution. Given that uniform distributions are maximum entropy, little assumptions can be exploited in 

regards to duration. Similarly, given that the pulses are uniformly distributed with similar pulse shapes, 

there is little gain in Fourier analysis. The information is encoded in the amplitudes. Each class is provided 

some initial amplitude pulse, not consistently between files. As more instances of the class’ event occur, 

the amplitudes increase. This results in an important conclusion: the class is dependent on the current 

observed amplitude of the event and previous occurrences of each class. For this reason, approaches like 

HMM will fall short as they fail to consider all previous states. Using these observations, two methods will 

be utilized: a hybrid model (K-Means + LSTM) and a DNN (autoencoder + LSTM). 

K-Means + LSTM: The first model utilizes K-means for performing segmentation and an LSTM to 

perform seq2seq decoding. The data is normalized and smoothed. Each file is then passed through K-means, 

with K=2. The goal is to convert the signal to a binary form (zeros/ones). The algorithm assumes that one 

centroid will be representative of the event amplitudes while the other centroid will be representative of the 

non-event amplitudes (DC offset), given that the signal is relatively sparse. A simple empirical threshold is 

then used to fine-tune these clusters: if the value is above the lowest centroid plus half a standard deviation, 

then the point is assigned as event class, otherwise the data point is assigned non-event class. The additional 

thresholding is necessary to account for small amplitude pulses. The first derivative is applied to the binary 

signal to provide positive impulses (start times) and negative impulses (end times) and are extracted. The 

seq2seq decoding is done using an LSTM. The raw data must be quantized first since LSTMs require one-

hot encodings. The LSTM contains an encoder step, a context vector and a decoding step optimized with 

the teacher-forcing principle. The sequence of amplitudes is decoded to a sequence of classes. The LSTM 

has the advantage of long-term memory so that it may remember previous amplitudes from earlier in the 

sequence. The output sequence is applied to the Baum-Welsh algorithm for comparing the decoded 

sequence to the true sequence. A ROC curve is computed using the output statistics of Baum-Welsh.  

Autoencoder + LSTM: This approach is similar to the above method, however the K-means algorithm for 

segmentation is replaced with an autoencoder. Unlike the traditional use-case, the autoencoder is used to 

map a normalized input to a binary signal representing events/non-events. The autoencoder featured an 

encoder, a latent space and a 

decoder. The rest of the algorithm 

remained the same: using the first 

derivative to extract timestamps, 

quantization, applying the LSMT, 

and evaluating using Baum-Welsh. 

 Results: Before evaluation, 

optimization is performed to ensure 

the best performance for both the 

LSTM and the autoencoder. By 

using different amounts of 

LSTM         

Config Quantized OutputDimension 
# 

Feats 
Accuracy 

0 100 32 17156 93.62 

1 50 32 10756 92.03 

2 25 32 7556 91.9 

3 100 16 7556 92.08 

4 100 8 3524 91.62 

5 200 32 7556 85.92 
Table 1. LSTM Optimization over feature space 



quantization and internal nodes, the number 

of features in the LSTM are modified, as 

shown in Table 1. The best configuration is 

found to use 100 as the quantization value and 

an internal node structure of 32. Based on 

these results, the autoencoder is tuned by 

varying the amount of compression to the 

feature space and the cost function, shown in 

Table 2. Generally, BCE with low 

compression performed the best, at the 

expense of many more features. Once 

optimized, results for the training and dev sets 

are reported, shown in Table 3. 

Generally, the K-Means approach proved 

superior to the autoencoder approach 

regarding accuracy and F1 score, while 

the autoencoder received higher AUCs. 

However, these results are not significant 

with any confidence above 50%, thus K-

Means cannot be determined as a 

superior algorithm. When examining 

false-positive rates, there is a much larger 

discrepancy which was found to be 

significant up to 80%. In this way, K-Means can be considered superior only when using this metric. In 

terms of complexity, K-Means is much simpler and does not require supervised training like the 

autoencoder, making K-Means more attractive. The ROC curves are shown to follow the general trend of 

descending linear lines, with the autoencoder having a slightly higher curve, Fig 1. However, it is apparent 

from these curves that both segmentors perform similarly. 

Conclusions: This assignment investigated segmenting a time-series signal and performing sequence 

decoding. A K-means + LSTM approach is used as a hybrid model followed by a purely DNN method 

using an autoencoder + LSTM. Many of the metrics resulted in insignificant differences, expect for false-

positive rates. In conjunction with its low-complexity, the K-Means approach with LSTM appears to be the 

better performing method based on the Dev and Train results. 

 

 

 

 

 

 

 

 

Autoencoder       

Config Parameter # Feats Accuracy 

0 
MSE (Low 
Compression 263617 84.54 

1 
BCE (Low 
Compression) 263617 86.34 

2 
BCE (High 
Compression 17156 82.45 

Table 2. Autoencoder Optimization over feature space 

System DataSet Accuracy F1 AUC 
FP 

Rate 

Auotencoder 

+ LSTM 

Train 86.33 0.55 0.49 16.93 

Dev 86.34 0.55 0.39 17.16 

Eval         

KMeans + 

LSTM 

Train 87.90 0.58 0.43 8.53 

Dev 87.67 0.58 0.35 10.46 

Eval         

Table 3. Summary of metrics 

Fig 1. ROC Curves 


