
Class Detecting System for Time Bound Signals

Joshua Cassell
Department of Electrical and Computer Engineering, Temple University

Joshua.cassell@temple.edu

Introduction: The goal for ECE 8527/4527: Introduction to Machine Learning and Pattern Recognition,
final project requires students to utilize a non-neural network and a neural network algorithm to construct
class detection systems using 10,000 train data sets and 2,000 dev data sets. The system is tested for
performance on 2,000 blind eval data sets. Both systems must successfully classify class events 0 – 4, start
time and end time of the event and give the confidence level of each prediction. My approach was to find
features like signal duration and amplitude from the test data to set up decision parameters for classifying
eval data.

Data Analysis The data presented was a 1D array with
times and amplitudes of a signal. The train data
contained 20,000 sets of data. Each set contains
thousands of signals with different amplitudes. In the
training data each set stated the number of events, event
class, start, end time, and duration for each event. Each
event class has various duration times, amplitudes and
occurrences. When plotting the data set (see fig. (1)) with
amplitude vs time, the start/stop times and events
become obvious. However, the amplitude and duration
for each event class are not the same. For instance, an
event labeled class 1 can have a duration of 200 and 11,
88 …, and same goes for the amplitude. This makes it
very difficult to find useful classification features.

Algorithm No. 1 Description: The classification method that I used was purely created from scratch using
python in the jupyter notebook environment and will be referred to as System 1. To detect an event class, I
used a sliding window approach to take in frames of instances. The frame size can be changed for
optimization. When working with a frame of the data computation time is fast. For each frame my code
finds the minimum and maximum amplitude values using the min() and max() python functions. The min
amplitude is subtracted from the max amplitude and if the value is greater than the threshold value then we
detect an event. The threshold value is a parameter that can be changed to better classify events. The
threshold must be low enough to detect a difference in amplitude but also high enough to ignore any
background noise. For each frame I detect the start and stop times for and event by looping through each
amplitude and subtracting the previous amplitude by the current amplitude. If the absolute value of the
difference is over the threshold value, then I detect a start/stop time at the time associated with that
amplitude. To differentiate between start and stop time I use an if statement to determine if previous
amplitude is greater or current amplitude is greater. A larger current amplitude will result in a start time and
a larger previous amplitude will mean an end time. When start and stop times are determine then the
duration is the stop time minus the start time and the average amplitude for that duration is calculated by
summing all the amplitude in that time duration and then dividing by the time duration.

Using the extracted time duration and amplitude the next step is to have the system extract all the correct
start/stop times, duration, and event classes that was stated in the train data and use this to make decision
parameters. So far, my code only uses duration times mapped to the correct class from a single test file in
order to choose class for the detected events. The decision is made by a simple if else statement that looks
at the detected duration times and matches them to the proper class with that same duration time. If the

Figure 1: Train data with time vs amplitude
graph.

duration time does not find any corresponding times, then the event is randomly given a class between 1
and then number of events detected by the system. If the system was to work perfectly it would give us the
correct start/stop times, duration and amplitude values for our data, but the class classifier still uses only
duration time a random guessing to detect the correct class of an event.

Proposed Algorithm Description: A Bayesian maximum likelihood classifier was supposed to be used to
learn the similarities between class, time duration and amplitude values. The data outputted from the system
explained above would have an extra feature which would be amplitude. If I could output a data set with
the start/stop times, duration times, and averaged amplitudes for each event class, then I could make a PDF
function for each duration and amplitude for each class. With the same system used above I would insert
the maximum likelihood classifier and compute the likelihood of the detected duration and amplitude in
order to determine the correct class for each event.

Results: I was not able to run my
system on all the required training,
dev and eval data sets so I could not
score my results. In table (1) we
have 0 percent for Train, Dev Test,
and Eval sections. In table (2) I show
the error rate computed for a single
test file for which most of my
system was modeled on. The error
rate is 66.66%, which is pretty high.
The high error rate is a result of the
random guessing function for the
event class. In this particular
training data, there was no events
for 5 through 9. My code was able
to find the correct rise and stop
times for a few of the events but
when a misfire occurs, or the
number of events is overshot then
start/stop times are mistakenly
assigned to the wrong event and that
is why there is an empty row for the
target values in table (2).

Conclusions: The system that I have created is fairly decent at finding stop and start times, detecting events
and computing time duration and average amplitude measurements for each event. The classification
method used is fairly poor and works with less than 30% accuracy on the training data file it was optimized
for. The maximum likelihood classifier which was not implemented in this project would probably not have
had much impact on improving class detection accuracy. The likelihood classifier would only work well if
there were a strong correlation between event time duration and amplitude, which can not be determined at
the moment because correct event features have not been extracted for analysis. From looking at the data
the duration and amplitude seem to be random. This system is not able to detect start\stop times if two
signals share the same amplitudes at one signal’s stop time and other signal’s start time, which happens at
least once in each data set resulting in problematic detection. To improve this system pre data processing
would be helpful. If the data could be manipulated to show features that clearly coordinate to event classes,
my approach would have been more successful.

 Data Set
Algorithm Train Dev Test Eval
System 1 00.00% 00.00% 00.00%
System 2 00.00% 00.00% 00.00%

Table 1. Scoring Package has not been used for Systems Due to System
Incompletion

Target Features Simulated Results
Event
Class

Start
Time

End
Time

Event
Class

Start
Time

End
Time

3 2851 3050 3 2851 3050
1 7382 7849 1 7382 7849
2 16046 16405 4 16046 16405
2 21559 21569 7 16404 21603
4 21570 21608 9 21560 21609
4 22253 22539 4 22253 22539
3 27585 27655 7 22504 27603
1 28191 28503 3 27586 27656
 1 28191 28504

Error Rate: 66.66%

Table 2. Results from a single train file, the target features are the correct
features for the training data. Simulated Results are features detected using
class perditions from System 1.

	Class Detecting System for Time Bound Signals

