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Introduction: This research involves the classification of a 

multiclass (3-class) dataset with significant class overlap. Class 

overlap is considered one of the most difficult problems in 

classification [4]. The problem arises from different classes 

sharing similar characteristics which results in class boundaries 

that are not clearly defined, and thus not linearly separable [2]. 

Current approaches from the literature use modified version of 

popular classifiers or implement a feature engineering approach 

to minimize the negative effects of the class overlap. In this 

study a multilayer perceptron (MLP) developed in the 

TensorFlow learning platform, and a random forest classifier 

(RFC) developed in the scikit-learn learning platform were used 

to tackle the classification problem of overlapping data. These 

classifiers were selected based on intuition gained from 

visualizing the data, refer to Figure-1, test classification scores, 

refer to Table-1, and information from the literature 

[1],[2],[3],[4]. Note that the test error rates were achieved via 

implementation of the respective classifiers with default 

hyperparameter settings. Also, note that the feature engineering 

approach was also implemented, with the goal of reducing the 

negative impact of overlapping via the implementation of 

different linear and nonlinear transformations, as well as the introduction of new features. These results 

however are not presented in this report as they did not yield performance improvements (0.5% to 1% 

decrease in performance). The rest of the paper is organized as follows. Section I presents a detailed 

summary of the multilayer perceptron approach and the process used to fine tune the model. Section II 

presents a summary of the random forest classifier and how it was tuned. Section III shows the classification 

results achieved by the selected classification methods, MLP and RFC. Lastly, Section IV presents the 

summary and conclusion. 

 Multilayer Perceptron Approach: The MLP classifier is a fully connected feedforward artificial neural 

network. The MLP used in this study was developed in the TensorFlow learning Platform. This 

classification method has many hyperparameters (hp) that define its structure or topology, as well as its 

predictive performance. These hyperparameters include the number of hidden layers, the number of neurons 

per layer, the activation functions, the number of epochs, and in some cases can also include the loss 

function and optimizer. It is easy to see that properly tunning a system with this many variables is a complex 

problem, and that manually tunning via a trail and error approach can be extremely time consuming and 

often unfruitful. This complex problem was approached via an automated hyperparameter tunning process. 

This process works by implementing variations of hyperparameter sets to the MLP model and looks for the 

set within defined hyperparameter range that maximizes validation-accuracy. It is important to note that the 

hyperparameters are tuned based on validation results, this is distinctly different than the weights which are 

tuned during the training process. Tunning the hyperparameters on the validation-accuracy helps prevent 

over-fitting during the training process, meaning that the learned system is more generalizable and will 

perform well on unseen data, such as the development and evaluation data sets.  

 Data Set 

Algorithm Train Dev 

AdaBoost 36.92% 37.08% 

KNN N/A 30.75 

MLP 28.15% 31.97% 

RFC 32.66% 32.81% 

SVM-RBF 30.86% 30.99% 

Table-1: Comparison of  Test Error Rates 
 

 

Figure-2: Visualization of Training Data  



To implement this automated tunning approached the 

development of a dynamic MLP model along with a 

hyperparameter testing range are needed. The dynamic 

MLP model replaces static (constant) hyperparameter 

inputs with variables. These variable inputs are used by the 

tunning process to implement and test different variations 

of the hyperparameter sets. These sets can include 

numerical values for parameters such as the number of 

hidden layers, string values for parameters such as the 

activation functions, and Booleans for activating  and 

deactivating processes such as pooling and dropout. The 

hyperparameter sets are bounded by the range specified for 

each of the parameters being turned. For numerical values, 

this range is defined by a minimum, a maximum and a step 

size. For string and Boolean values, this range is defined by 

a list of options (strings/Booleans) that the process can 

iterate through. This automated tunning process was used 

to develop the MLP classifier used in this research, refer to 

Table-2. The classification results obtained via this method 

are discussed in Section III Results. 

Random Forrest Classifier Approach: The RFC is an ensemble-based meta-estimator that uses decision 

trees to fit various subsets of training data. Like other ensemble methods, it uses averaging to improve the 

predictive accuracy of the learned model and to prevent over-fitting. For tunning of the RFC’s hyper 

parameters, such as number of estimators, max depth, and max samples, a tunning process akin to the 

method used for tunning the MLP was used. Since the MLP approach was developed for the TensorFlow 

platform only, a similar but simplified approach was implemented for the scikit-learn RFC classification 

method. The main distinction here is that while the previous approach implemented and tested a set of 

hyperparameters at a time, this simplified approach iterates over individual hyperparameters. Another key 

distinction is that this tunning process seeks to obtain the 

hyperparameters that optimize training-accuracy, while 

the previous method optimized validation-accuracy. This 

is an important distinction because optimizing the training-

accuracy can lead to overfitting, as is discussed in Section 

III Results. 

Results: The RFC and MLP classification methods used 

in this study were tunning via automated hyperparameter 

tunning processes as describe in Section I and Section II. 

The developed classifiers were used to generated (predict) 

class assignments for the training, development, and 

evaluation data sets. These results are summarized in 

Table-3. From Table-3 we can conclude that both methods 

performed well on all data sets, but the RFC had the best 

performance on the training data set, while the  MLP 

method had the best performance on the development and 

evaluation data sets. This is an important observation 

because it means that the RFC severely overtrained on the 

training data set reaching a marginal error rate of 0.18%, 

which lead to poor generalization that corresponds to the significantly higher error rates achieved on the 

unseen data sets. Also, from Table-3 we can determine that the MLP approach did not suffer as much from 

 Data Set 

Algorithm Train Dev Test Eval 

RFC 00.18% 29.03% 63.36% 

MLP 27.44% 27.40% 61.59% 

Table-3. Comparison of Final Error Rates. 

Hyperparameters  Value  

Number of HL  9 (+2 in/out)  

 Number of 

Neurons 

5:90 (per HL)  

 Activation 

Function 

ReLU, Tanh, etc. (9 

diff)  

Optimizer  Adam 

Loss  Sparse-Categorical 

Crossentropy  

Number of 

Epochs 

50 

Table-2: MLP Hyperparameters 

 

Figure-2: MLP Accuracy vs Epochs 



this issue as it achieved essentially the same score on both the training and development data sets. Further 

evidence of the generalizability of the MLP method is presented in Figure-2, where both the training and 

validation accuracy (1 − 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒) converge to approximately the same value.  

Conclusions: In this study two classifications methods were used to tackle the complex multiclass 

classification problem of  a dataset with significant class overlap. These methods include the random forest 

classifier (RFC), and the Multilayer Perceptron (MLP). Both methods were fine-tuned via automated 

hyperparameter tunning processes. The MLP tunning process works by implementing variations of 

hyperparameter sets to the MLP model and looks for the set within defined hyperparameter range that 

maximizes validation-accuracy. As detailed in Section III Results, the MLP method tuned via this 

automated approach yielded good predictive performance and generalizability. But it did not reach the 

expected classification performance, consisting of matching or improving upon the provided baseline 

results. Considering this issue, further work is needed to refine this approach and ensure that the optimal 

hyperparameter set is found. 
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