
Classification of Multiclass Overlapping Data

Renato J. Rodriguez Nunez

Department of Mechanical Engineering, Temple University

Renato.Rodriguez@temple.edu

Introduction: This research involves the classification of a

multiclass (3-class) dataset with significant class overlap. Class

overlap is considered one of the most difficult problems in

classification [4]. The problem arises from different classes

sharing similar characteristics which results in class boundaries

that are not clearly defined, and thus not linearly separable [2].

Current approaches from the literature use modified version of

popular classifiers or implement a feature engineering approach

to minimize the negative effects of the class overlap. In this

study a multilayer perceptron (MLP) developed in the

TensorFlow learning platform, and a random forest classifier

(RFC) developed in the scikit-learn learning platform were used

to tackle the classification problem of overlapping data. These

classifiers were selected based on intuition gained from

visualizing the data, refer to Figure-1, test classification scores,

refer to Table-1, and information from the literature

[1],[2],[3],[4]. Note that the test error rates were achieved via

implementation of the respective classifiers with default

hyperparameter settings. Also, note that the feature engineering

approach was also implemented, with the goal of reducing the

negative impact of overlapping via the implementation of

different linear and nonlinear transformations, as well as the introduction of new features. These results

however are not presented in this report as they did not yield performance improvements (0.5% to 1%

decrease in performance). The rest of the paper is organized as follows. Section I presents a detailed

summary of the multilayer perceptron approach and the process used to fine tune the model. Section II

presents a summary of the random forest classifier and how it was tuned. Section III shows the classification

results achieved by the selected classification methods, MLP and RFC. Lastly, Section IV presents the

summary and conclusion.

 Multilayer Perceptron Approach: The MLP classifier is a fully connected feedforward artificial neural

network. The MLP used in this study was developed in the TensorFlow learning Platform. This

classification method has many hyperparameters (hp) that define its structure or topology, as well as its

predictive performance. These hyperparameters include the number of hidden layers, the number of neurons

per layer, the activation functions, the number of epochs, and in some cases can also include the loss

function and optimizer. It is easy to see that properly tunning a system with this many variables is a complex

problem, and that manually tunning via a trail and error approach can be extremely time consuming and

often unfruitful. This complex problem was approached via an automated hyperparameter tunning process.

This process works by implementing variations of hyperparameter sets to the MLP model and looks for the

set within defined hyperparameter range that maximizes validation-accuracy. It is important to note that the

hyperparameters are tuned based on validation results, this is distinctly different than the weights which are

tuned during the training process. Tunning the hyperparameters on the validation-accuracy helps prevent

over-fitting during the training process, meaning that the learned system is more generalizable and will

perform well on unseen data, such as the development and evaluation data sets.

 Data Set

Algorithm Train Dev

AdaBoost 36.92% 37.08%

KNN N/A 30.75

MLP 28.15% 31.97%

RFC 32.66% 32.81%

SVM-RBF 30.86% 30.99%

Table-1: Comparison of Test Error Rates

Figure-2: Visualization of Training Data

To implement this automated tunning approached the

development of a dynamic MLP model along with a

hyperparameter testing range are needed. The dynamic

MLP model replaces static (constant) hyperparameter

inputs with variables. These variable inputs are used by the

tunning process to implement and test different variations

of the hyperparameter sets. These sets can include

numerical values for parameters such as the number of

hidden layers, string values for parameters such as the

activation functions, and Booleans for activating and

deactivating processes such as pooling and dropout. The

hyperparameter sets are bounded by the range specified for

each of the parameters being turned. For numerical values,

this range is defined by a minimum, a maximum and a step

size. For string and Boolean values, this range is defined by

a list of options (strings/Booleans) that the process can

iterate through. This automated tunning process was used

to develop the MLP classifier used in this research, refer to

Table-2. The classification results obtained via this method

are discussed in Section III Results.

Random Forrest Classifier Approach: The RFC is an ensemble-based meta-estimator that uses decision

trees to fit various subsets of training data. Like other ensemble methods, it uses averaging to improve the

predictive accuracy of the learned model and to prevent over-fitting. For tunning of the RFC’s hyper

parameters, such as number of estimators, max depth, and max samples, a tunning process akin to the

method used for tunning the MLP was used. Since the MLP approach was developed for the TensorFlow

platform only, a similar but simplified approach was implemented for the scikit-learn RFC classification

method. The main distinction here is that while the previous approach implemented and tested a set of

hyperparameters at a time, this simplified approach iterates over individual hyperparameters. Another key

distinction is that this tunning process seeks to obtain the

hyperparameters that optimize training-accuracy, while

the previous method optimized validation-accuracy. This

is an important distinction because optimizing the training-

accuracy can lead to overfitting, as is discussed in Section

III Results.

Results: The RFC and MLP classification methods used

in this study were tunning via automated hyperparameter

tunning processes as describe in Section I and Section II.

The developed classifiers were used to generated (predict)

class assignments for the training, development, and

evaluation data sets. These results are summarized in

Table-3. From Table-3 we can conclude that both methods

performed well on all data sets, but the RFC had the best

performance on the training data set, while the MLP

method had the best performance on the development and

evaluation data sets. This is an important observation

because it means that the RFC severely overtrained on the

training data set reaching a marginal error rate of 0.18%,

which lead to poor generalization that corresponds to the significantly higher error rates achieved on the

unseen data sets. Also, from Table-3 we can determine that the MLP approach did not suffer as much from

 Data Set

Algorithm Train Dev Test Eval

RFC 00.18% 29.03% 63.36%

MLP 27.44% 27.40% 61.59%

Table-3. Comparison of Final Error Rates.

Hyperparameters Value

Number of HL 9 (+2 in/out)

 Number of

Neurons

5:90 (per HL)

 Activation

Function

ReLU, Tanh, etc. (9

diff)

Optimizer Adam

Loss Sparse-Categorical

Crossentropy

Number of

Epochs

50

Table-2: MLP Hyperparameters

Figure-2: MLP Accuracy vs Epochs

this issue as it achieved essentially the same score on both the training and development data sets. Further

evidence of the generalizability of the MLP method is presented in Figure-2, where both the training and

validation accuracy (1 − 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒) converge to approximately the same value.

Conclusions: In this study two classifications methods were used to tackle the complex multiclass

classification problem of a dataset with significant class overlap. These methods include the random forest

classifier (RFC), and the Multilayer Perceptron (MLP). Both methods were fine-tuned via automated

hyperparameter tunning processes. The MLP tunning process works by implementing variations of

hyperparameter sets to the MLP model and looks for the set within defined hyperparameter range that

maximizes validation-accuracy. As detailed in Section III Results, the MLP method tuned via this

automated approach yielded good predictive performance and generalizability. But it did not reach the

expected classification performance, consisting of matching or improving upon the provided baseline

results. Considering this issue, further work is needed to refine this approach and ensure that the optimal

hyperparameter set is found.

Citations:

[1] Lecture Slides ECE 8527 Introduction to Machine Learning and Pattern Recognition

[2] Sáez, J. A., Galar, M., & Krawczyk, B. (2019). Addressing the overlapping data problem in

classification using the one-vs-one decomposition strategy. IEEE Access, 7, 83396-83411.

[3] Tang, W., Mao, K. Z., Mak, L. O., & Ng, G. W. (2010, July). Classification for overlapping classes

using optimized overlapping region detection and soft decision. In 2010 13th International Conference

on Information Fusion (pp. 1-8). IEEE.

[4] Xiong, H., Wu, J., & Liu, L. (2010, December). Classification with classoverlapping: A systematic

study. In Proceedings of the 1st International Conference on E-Business Intelligence (ICEBI2010),.

Atlantis Press.

[5] https://scikit-learn.org/

[6] https://keras.io/

