
Machine Learning and Pattern Recognition Final Project 

Jose Paz Amaya 
Department of Bioengineering, Temple University 

tul16325@temple.edu 

Introduction: For the class final, we participate in a 
competition where we compete to get the best 
performance on classifying a particular data set (Fig. 1). 
The amount of overlap between classes presents a 
challenge when classifying, especially given the data 
only has 2 dimensions. We classify the data using two 
different approaches: a non-neural network-based 
approach and a neural network based approach. I chose 
to use the K-Nearest Neighbor algorithm from SciKit 
Learn and a Multi-Layer Perceptron using TensorFlow 
Keras, respectively. KNN is a machine learning 
algorithm where decisions are based on a majority 
vote. It is an algorithm that is frequently used for classification since it is able to follow non-linear 
surfaces better than other algorithms. MLP, on the other hand, consists of a feed-forward neural network 
that has at least three layers of neurons. The value in MLPs comes with their ability to learn 
representations of the data and use mathematical mappings to predicting outputs.  
 
KNN Algorithm: Initially, I tried to stay away from KNN because of its popularity in previous 
semesters. However, after quickly trying out several algorithms (SVM, LDA, K-means), KNN performed 
best with minimal tunning, showing potential for improvement once parameters were carefully tunned. I 
used GridSearchCV from SciKit Learn to sweep through parameters and check performance on each 
combination using a 5-fold cross validation. The parameters tested were: weight function, number of 
neighbors, and power parameter for the Minkowski metric. Because of the range of cases that needed to 
be tested to find an optimal set would have taken a significant amount of time every time it was ran, I 
swept through range 30-150 by increments of 10 and once the optimal value was found (110), I then 
narrowed the search down around that value by sweeping 90-120 by increments of 1. Uniform weight 

function and the Manhattan power parameter were 
consistently giving the best performance during cross 
validation. Finally, the optimal number of neighbors to 
maximize performance was found to be 112. To obtain a 
parameter estimate that would generalize better, 
GridSearchCV ran on the training and the development data 
set concatenated together. Model training was done only on 
the training data set (with the parameters N_neighbors = 
112, weight=’uniform’, distance_metric=’Manhattan’) and 
then the model was used to predict the training, 

development and evaluation labels.  
 

The same process described above was repeated after transforming the data using LDA to try to reduce the 
amount of overlap and increase performance. However, the results suggested overfitting since the error on 
the training data set was lower but the higher on the development set. From this observation, I predicted 
this system would perform worse than without the LDA so I stuck to KNN alone. PCA was tested again 
but the transformation was not significant and there was no change in performance when compared to KNN 
alone. 

Figure 1. Three different classes in the training data set. 

Figure 2. KNN results on training data 



MLP Algorithm: For the neural network algorithm, MLP was implemented using TensorFlow Keras. 
Initially, different network architectures were tested to see what design would fit the classification problem 
best. As a result, a convergent network was used to construct the model, which consisted of and input layer 
of 2 neurons and then, 300 neurons in the first layer, 30 in the second layer and 3 in the output layer. The 
activation function for every layer was set to rectified linear unit (ReLu) except the last layer where it was 
set to SoftMax. For the optimizer, I used  Stochastic Gradient Descent (SGD) since it proved to work better 
than Adam for my model. In addition, I tried several categorical loss functions but the one that worked best 
with the model was the Spare Categorical Cross Entropy. The learning rate was set to 0.01, the epoch was 
set to 60 and the batch size to 200 as this promoted convergence within a reasonable amount of time (~5 
min.) while avoiding overfitting. 

Most of these metric and parameters where found through an exhaustive search. Although, some of these 
parameters/metrics where initially selected according to the nature of the data set, I quickly found that 
accuracy could be improved by changing parameter values in ways that were not necessary logical or made 
sense in the context of the problem or data set. However, that is fine since we are engineers and do not lose 
sleep (I did) over proving or making sense out of things like these, we just look for the parameters that will 
yield the best performance. 

Results: KNN scored 25.35% and 25.81% error 
on the training and development sets 
respectively. There was a sharp change in 
performance when scored on the evaluation set, 
where error increased to 64.30%. Using LDA to 
reduce de overlap in the features resulted in 
similar performance scoring 25.34% error on 
the training set and 25.95% on the development 
set.  

The neural network-based approach was able to 
achieve better performance, scoring 62.64% on 
the evaluation data set. Interestingly, the MLP 
also scored worse than the LDA KNN and KNN 
alone at 28.79% for training and 28.88% for 
development sets..  

Conclusions: In conclusion, KNN has shown to be a great algorithm but performance on the evaluation set 
but MLP performed better due to its flexibility. KNN does a great job at classifying data with non-linear 
decision surfaces and consequently, it was a great fit for the data we had for the competition. Considering 
the results, the Gridsearch performed on the pooled data (training  + development) overfit the model more 
than expected. This becomes evident when you see the low error rate achieved on the training set (25.35%) 
and on the development set (25.81%). Perhaps a higher K value could have smoothed out the decision 
surfaces and generalized better. In addition, the transformation of the data using LDA before training and 
testing the model did not result in a significant difference in performance at a reasonable confidence level. 
However, the slightest decrease in error on the training set and increase on the development set suggested 
to me the KNN alone might have a better chance of generalization for the competition where every decimal 
counts.  

On the other hand, MLP had significant difference in performance when compared to KNN. Performing 
significantly worse than KNN on the training and development sets at a 99% CL, MLP was able to 
generalize better and outperform KNN when scored on the evaluation set. MLP achieved a 62.64% error 
whereas KNN got 64.30%. This difference is significant at a 99% CL. The MLP, however, had to train for 

 Data Set 
Algorithm Train Dev Test Eval 

KNN (k=112) 25.35% 25.81% 64.30% 
LDA + KNN  

(k=111) 25.34% 25.95 % - 

Table 1. The transformation of the data led to a decrease in 
performance in the development set. 

 Data Set 
Algorithm Train Dev Test Eval 

SciKit: KNN 25.35% 25.81% 64.30% 
Keras: MLP 28.79% 28.88% 62.64% 

Table 2. MLP was able to achieve a better performance in the 
evaluation set while performing worse in the train and dev sets. 



~5 minutes while KNN was usually done training in about 10-15 seconds, making the trade-off in 
computational complexity and performance clear. In conclusion, MLP’s ability to map non-linear 
representations of the data and its higher complexity resulted in better significantly performance and better 
generalization than KNN. 

 

 

  


