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Introduction: The training dataset of this experiment contains 300000 samples, and the development set 
has 15000 samples. There are a total of 3 classes in the dataset labeled as 0,1, and 2. In order to classify the 
data as a non-neural network approach, I choose KNN. By meticulously experimenting with multiple 
machine learning models, I found KNN performs best in this particular case. I got an error rate of 25.38% 
for the training set, 25.72% for the development set, and 64.37% for the evaluation set. For the Neural 
network approach, a multilayer perceptron with three hidden layers is used. The error rate is found  27.20%, 
27.10%, and 62.17% for training, development, and 
evaluation set, respectively. 

K-Nearest-Neighbors: KNN is a supervised learning 
algorithm where a new data point is classified based on its 
neighboring data points. In a neighbor of K points, the class 
that has the dominant number of samples will be assigned 
to the new data points. Several parameters need to be tuned 
in order to make the classifier effective. n_neighbors is 
one of the crucial parameters, which decide how many data 
points should be included in a neighbor. For a minimal 
value of this parameter, training accuracy will be very high, 
but this will cause overfitting on the training data. 
n_neighbors = 110 is selected experimentally, which provides satisfactory performance on the 
development data without much compromising training accuracy. Figure 1 demonstrated the change of 
error rate with respect to the number of neighbors.  

For measuring the distances to find the neighbors, several distance matrices are available. They are 
generally called ‘minkowski distances with an argument ‘p’. for p = 1, it is called Manhattan distance, and 
p=2 is called Euclidean distance. I got the best result for the ‘minkowski distance with ‘p = 6’ in the given 
data set. The complete parameter set that was used to train the KNN model is demonstrated in Table 1.  

 

 

The KNN is trained with 10-fold cross validations. The error rates for each fold are then averaged to yield 
the final error rate. It is a good evaluation method which ensures a certain result from an algorithm does 
not come by a random chance.  

Multilayer Perceptron: Multilayer Perceptron is a fully connected neural network, which can learn the 
nonlinear relationship between the input features and labels. It has multiple layers, with each layer having 
multiple nodes. Each node performs some mathematical operation, i.e., multiply the wights associated with 
the node with the input and add a bias term. After that, some nonlinear activation function is used so that it 
can learn nonlinear relationships. After computing the output, the loss between predicted output and actual 
label is backpropagated to the network and optimize the weights of the network by minimizing the overall 
cost function.  After the training is completed, the network is expected to predict unknown data with 
satisfactory accuracy.  

 
Figure 1: Number of Neighbors Vs Error Rate 

 

n_neighbors weights Leaf_size Metric p 
110 Uniform 30 minkowski 6 

Table 1: KNN Parameters 

 



In this project, Tensorflow is used to build the multilayer perceptron network. Because the problem is a 
multiclass classification, the labels are encoded to the one-hot encoded form in the beginning. For example, 
initially, the labels were 0,1 and 2, and after performing one hot encoding, they become 100,010,001, 
respectively. Therefore, for 300000 training data, the label is in the shape of a 300000 × 3 vector. The 
network was created using Keras sequential model. For hidden layers, I tried the values between 2 to 8, but 
with the increasing number of layers, no noticeable performance improvement was found. As a result, I 
fixed the number of hidden layers as 3. The number of nodes in each layer is selected experimentally as 50. 
I also used the ReLU activation function for nonlinear activations. ReLU activation provides a 
comparatively faster response. For multiclass classification, softmax activation is used in the output layer. 
In the training process, five fold cross-validation is used. The entire training dataset is divided into five 
groups, and each time 4 of the groups are used for training, and the remaining one is for validation. The 
number of epochs is set to 300 because beyond that model’s accuracy was not improving much. The 
complete set of parameters is summarized in Table 2.   

 

 

 

For preventing overfitting Dropout and 𝑙! Regularization was tried, but they provided poorer performance 
compared to without regularization.  

Results: The complete result for the 
classification is summarized in Table 3. Both 
KNN and MLP provide a comparable result, 
although MLP performs slightly better in the 
blind evaluation set.  

From Table 3, the training and development set error is sufficiently close for a given algorithm, but the 
blind evaluation set is very far apart. This seems unusual, and it's complicated to draw any conclusion 
without examining the dataset. One possible reason might be the evaluation dataset is not from the same 
distribution as the Train and Development set.    

To further evaluate the performances, some performance measures are tabulated in Table 4,  

 

 

 

 

 

Conclusions: In this project, a multiclass classification has been done using two algorithms. From their 
performance, it is difficult to decide which one is superior. In Training and Development data, the 
algorithms did a somewhat satisfactory performance. Although theoretically, it is possible for the neural 
network to provide almost perfect performance, at least for training data using sufficient depth of the layers 
and adequate numbers of neurons, it could not be possible to build an arbitrarily complex network due to 

 
 
 

Table 3. Summary of the error rate from the two algorithms 
 

 Data Set 
Algorithm Train Dev Test Eval 

KNN 25.38% 25.72% 64.37% 
MLP 27.20% 27.10% 62.17% 

 

hidden 
layers 

No. of Nodes Batch Size Epochs Learning 
Rate 

Optimizer Loss function 

3 50 64 300 0.001 Adam Categorical 
Cross Entropy 

Table 2: Parameter Set for MLP 

 

Algorithm Accuracy Sensitivity Specificity Precision F1 
Score 

KNN 
Class 0 0.84 0.81 0.85 0.73 0.77 
Class 1 0.81 0.77 0.83 0.69 0.73 
Class 2 0.85 0.65 0.94 0.85 0.73 

MLP 
Class 0 0.82 0.87 0.79 0.68 0.76 
Class 1 0.83 0.78 0.81 0.68 0.73 
Class 2 0.84 0.54 0.99 0.95 0.69 

Table 4: Performance Measures 

 



hardware limitations. Proper hyperparameter tuning is another way to get performance-boosting but finding 
the best set of parameters is challenging. A popular way to find parameters is Grid Search, which is 
computationally expensive. In this work, I manually tested different parameters to get the possible best 
performance.  


