
Machine Learning Classifiers

Thao Cap

Department of Electrical and Computer Engineering, Temple University

Thao.cap@temple.edu

Introduction: In this research, there is a dataset of two-

dimensional data that will be used to analyzed and

classified based on two different types of machine

learning algorithms. The first algorithm uses a non-

neural approach, and the second algorithm uses a neural

network-based approach. The dataset consists of

training data, development data, and evaluation data.

We choose K-nearest neighbor (kNN) algorithm for the

non-neural approach and Multilayer perceptron (MLP)

for the neural network approach because we have

relatively small amount of data (around 100000

samples) and our training data has provided labels.

Algorithm No. 1 Description: kNN – This is a simple and supervised machine learning algorithm that

classifies the new data based on the surrounding training data. The kNN algorithm finds K samples, where

K is the number of samples, that have the nearest distance compared to the new data. It then uses the

majority vote to assign the class that has most votes to the new data.

Knn uses a few parameters which can be used for tuning the algorithm:

- n_neighbors determines number of neighbors that we want to use.

- Weights determines the weight function used in prediction.

- Algorithm used to compute the nearest neighbors.

- Leaf_seize determines number of points at which to switch to brute-force.

- P determines the power parameter for the Minkowski metric. P =1 is using Manhattan_distance,

and p=2 is using the standard Euclidean metric.

I choose an initial k value of 2 then run the classifier on the training and development data to test if feature

scaling is necessary for our data. After testing the classifier with Normalization scaler and Standardization

scaler, and without scaler, I have the result on Table 1

Based on the table above, we decide to choose Standardization for feature scaling our data.

Feature Scaler
Error

rate

Normalization 29.85%

Standardization 29.78%

None 29.78%

Table 1. Error rate when apply feature scaling on knn, k=2

Figure 1: Scatter plot of a training set

To find the optimal parameters to tune the algorithm, Sklearn has provided

sklearn.model_selection.GridSearchCV that we can do a bruce-force search to find the optimal

parameters among all parameters that we want to test. GridSearchCV basically applies cross-validation to

split and test the data with provided parameters.

After running the Knn model with GridSearchCV, we found the optimal parameters of k value is 108,

power parameter for the Minkowski metric is Euclidean.

Applying the optimal parameters gives us the result in table 2 below.

 Algorithm No. 2 Description: MLP - A multilayer perceptron is a class of feedforward artificial neural

network and often used to supervised learning problem. The MLP consists of one input layer, one output

layer, and an arbitrary number of hidden layers. We use mlpclassifer module provided by sklearn to

implement. With similar tools used in Knn, GridSearchCV is used to find the optimal parameters for the

model.

After running GridSearchCV, we have selected the activation function to be the rectified linear unit

function, which returns f(x) = max(0, x), and the hidden layer sizes to be (100, 100, 50).

Results:

Below are error rates from each model for different data. We can see that the performance of the two

methods are very similar. Generally, KNN performs slightly better on our training data and development

data, whereas MLP gives a slightly smaller error rate on the eval data. However, the difference between the

error rates is not statistically significant. To improve my KNN model, I can use cross-validation on the

training set find the optimal k. To improve my MLP model, I can test with more hidden layer sizes and

learning rate to find the best optimal parameters.

Conclusions:

Because time is limited but Sklearn GridSearchCV requires a longer computing time, I was not able to find

the best parameters for both methods. This project provides me a lot of insight on how to tune a model and

how to pick with algorithms used for a given task.

 Data Set

Algorithm Train Dev Test Eval

Knn 25.62% 25.39% 67.32%

MLP 26.29% 26.35% 67.07%

Table 2. Error rates for knn and mlp

