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Introduction: Machine learning can be a powerful tool for classification of arbitrary data. The goals of this 
project are to train a classifier to classify the evaluation data as accurately as possible, using both a neural 
network and a non-neural network approach, and to evaluate the performance of the classification. 

Datasets of two-dimensional and five-dimensional data were provided. These datasets consist of training 
data, development data, and evaluation data. The 5D evaluation data was provided without labels — even 
so, the labels on the development and evaluation data must not be used to train the classifier. 

Algorithm No. 1 Description: K-Nearest-Neighbors: This is a supervised machine learning algorithm 
that finds a set number of training samples (K) that are nearest to the point being classified and uses them 
to predict the label of this point. This is a member of the family of nearest-neighbor algorithms, which 
includes both supervised and unsupervised algorithms. There are several parameters used by the algorithm, 
which are important for classification. n_neighbors determines how many neighbors are considered for 
each point; weights determines the weight function used for prediction: whether all points are to be 
weighted equally, or if the weight should be based on distance; algorithm determines the algorithm used 
to compute the nearest neighbors; leaf_size determines at what point the chosen algorithm switches to 
the brute-force method; metric determines what distance metric is used for the tree, and p determines the 
power parameter in case the Minkowski metric is used. The available algorithms are BallTree and 
KDTree, which refer to two different data structures for storing a sorted hierarchical structure, as well as 
a brute-force approach. The brute-force approach has acceptable performance for small training sets with 
few dimensions, but its complexity rapidly increases as the training set size and number of dimensions 
increase. 

The optimal parameters are best determined via a search process. In order to make this easier, Scikit-Learn 
provides several meta-classifiers. We are using sklearn.model_selection.GridSearchCV, 
which does a brute-force search of all the parameters we would like to try. By default, it performs cross-
validation by 5-fold segmentation of the training data, but the training data and the dev data can also be 
provided separately. GridSearchCV is able to parallelize the searching across multiple CPU cores, which 
helps when there are many parameters being tested. 

When the training data is applied on a K-nearest-neighbors model trained with said data with distance-
based weighting, we appear to obtain an error rate of 0%. This is because the algorithm is comparing the 
training data points to themselves. We cannot exactly call this overfitting, but the error rate produced this 
way is not useful regardless. Therefore, we must either split the training dataset in order to measure the 
error rate or stick to uniform weighting. As the error rate difference between uniform weighting with a 
Euclidean distance metric and distance-based weighting with a Manhattan distance metric was minimal for 
the 5D dataset, we used uniform weighting. (I believe the two parameters compensate for each other in that 
case — I found this phenomenon to be common when using GridSearchCV: it does not provide much 
information on whether combinations of parameters compensate for each other and therefore produce nearly 
the same performance. I believe it offers a way to retrieve scores for each cross-validated slice, but I ran 
out of time to do this.) 

The parameters used for the K-nearest-neighbors models are listed in Table 1, and the final error rates are 
in Table 3. The leaf size was fixed to 30 for the 5D dataset, as using a smaller leaf size increases computation 
time with little benefit. Plots of the algorithm being used on the train and dev datasets, with the decision 



surfaces highlighted, can be seen in Figures 1 and 2, respectively, for the 2D dataset. (Plots for the 5D 
dataset are left out, as displaying all five dimensions would be difficult.) 

 

 

 

 

 

 

 

 

 

 

Algorithm No. 2 Description: Multilayer Perceptron: This is a class of feedforward neural network. We 
were provided with a baseline Pytorch model, which we could adapt for our purposes. The baseline Pytorch 
model was written for a 26-dimension dataset and needed significant modification to be useful. 

Neural network training typically uses an adaptive optimization algorithm. One of the currently popular 
training algorithms is the Adam optimizer. Adam stands for adaptive moment estimation; this optimizer 
combines a stochastic gradient descent (SGD) approach with use of the first and second moments of the 
learning rate to adapt the learning rate. 

The learning rate is a hyperparameter that sets the amount the weights of the model are updated during each 
training run. If it is too large, the error rate may increase during training. If it is too small, the model will 
take much longer to train, and may provide a non-optimal solution. Tuning the learning rate is critical to 
obtain useful output from a neural network model. 

As training progresses, learning decreases. If the learning rate is too large, the model will stop learning 
before a good solution is found. The ReduceLROnPlateau scheduler was used to further dynamically 
adjust the learning rate between epoch runs. As the training progressed, the learning rate needed to be 
decreased for training to continue. Otherwise, the loss would increase rather than decrease. This scheduler 
monitors the learning rate and decreases the learning rate as needed. Termination of training was 
implemented where if the decrease in loss was small enough (1e-5) for enough epochs (25), training was 
terminated. Additionally, the model was saved after each epoch, to allow for manual termination of training 
with Ctrl-C. 

The model used for the 2d dataset has three hidden layers, with the two outer hidden layers having 20 
neurons each and the inner hidden layer having 50 neurons. The model used for the 5d dataset also has three 
hidden layers, with the hidden layers having 50 neurons each. The rectified linear (ReLU) activation 
function is used on each layer. Even though the models were chosen via a fair amount of testing, adjusting 
the layers as well as number of neurons did not necessarily provide significant improvement. 

Figure 1: 2D training data with decision surface Figure 2: 2D dev data with decision surface 

Data Set n_neighbors algorithm metric weights Leaf_size 
2D 18 ball_tree manhattan uniform 30 
5D 600 ball_tree euclidean uniform 30 

Table 1. K-nearest-neighbors parameters 



Tuning the hyperparameters were critical for obtaining reasonable performance from the neural network — 
perhaps more so than the model design. The final hyperparameters for the models are in Table 2, and the 
final error rates are in the combined Table 3. 

 

 

 

Results: The combined classification results can be seen in Table 3. The confidence levels for the difference 
in performance between the K-nearest-neighbors algorithm and the MLP algorithm can be seen in Table 4. 
Both classification methods provided comparable performance, with the K-nearest-neighbors algorithm 
providing slightly better results. With further tuning, it should be possible for both algorithms to perform 
about the same; however, these results are very much data dependent. 

 

 

 

 

 

 

 

 

Conclusions: For the purposes of this project, it is unclear which algorithm is superior. While both can be 
tuned to provide somewhat better results, the maximum classification rate seems to be limited, as the output 
is highly dependent on the quality of the data, and the improvement is minimal. 

That said, for the purposes of detecting seizure or no seizure, even the error rates that we are getting for the 
2D data set are too high. The provided data is a single EEG vector from the middle of a seizure event. This 
does not provide sufficient information to classify seizure or no seizure with high accuracy. Use of temporal 
data, together with a neural network well suited for this data, such as an RNN, would likely produce better 
results, as would a spectral estimation process that extracts frequency domain data over time intervals. 
Several papers discuss the use of these techniques1,2,3. 
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 2D Data 5D Data   

Algorithm Train Dev 
Test Eval Train Dev Test Eval 

K-nearest-
neighbors 7.69% 7.80% 8.15% 36.84% 37.33% 36.87% 

Multilayer 
Perceptron 8.30% 8.50% 8.35% 38.24% 37.78% 38.38% 

Table 3: Final error rates 

Data Set Learning rate Batch size Number of epochs 
2D 1e-5 500 309 
5D 5e-6 500 787 

Table 2. MLP hyperparameters 
 

Data Set T rain Dev Test Eval 
2D 94.41% 79.08% 59.09% 
5D 100% 74.44% 98.62% 

Table 4. Confidence levels of Knn scores vs. MLP scores 


