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Introduction: This final paper is an analysis on 2 types of machine learning algorithms, a neural-network                
based one and a non-neural, implemented after the knowledge acquired in class during the semester. The                
chosen algorithms are a Random Forest and a Multilayer Perceptrons. These algorithms were trained in a                
data set of 10,000 data of two-dimension and then its performances were evaluated in a development set                 
with 2,000 data points and also 2D. After the best parameters were arranged on the algorithms, they were                  
put through their final examination using first an evaluation set of 2,000 data points with 2D and then a                   
larger data set of five-dimensions. A training set with 10,0000 data points were used so, later, the                 
performance of the trained algorithm was measured in the training data itself and on new development                
and evaluation data set with 10,000 data points each. After both algorithms are implemented, they error                
rates are going to be compared using the concept of “statistical significance” learned in class using a                 
confidence level of 95%. 

Random Forest: The Random Forest Classifier is considered one of the best machine learning algorithms               
to implement. It works, as its name implies, with a large number of decision trees operating together to                  
get a result. A decision tree is a data structure that consists of a root node where the information starts and                     
goes down through its decisions brands, where information about the features are used when choosing               
which brand to go until it finally hits a leaf node, the end of the path, where the answer is allocated. In this                       
algorithm, each decision tree in the forest will have a prediction and the class is chosen given the                  
prediction that has the most votes. This works good because a big number of unrelated models, the trees,                  
acting as a group is going to exceed any single model. And so, the key for a good implementation of this                     
algorithm is to have decision trees with low correlations between each other, this way they can protect                 
each other from their own classification mistakes. For this final project, it was used an existing                
implementation of a Random Forest Classifier from the scikit-learn python library. 

The implementation consisted of creating a model and using the train.txt set to train the algorithm in a                  
data set with two features and then, evaluating its performance on the training data itself and the dev.txt.                  
As a characteristic of this algorithm, it is not hard to get an error rate of 0% on the training set, but this is                        
due to an overfitting which makes the algorithm not perform so well on other data sets, this way, a search                    
for parameters that could balance this performance was made. This is called hyperparameter tuning,              
where the settings of an algorithm are adjusted to optimize its performance. On the Random Forest                
algorithm, the main parameters from the library that were exhaustive searches were the number of               
estimators (nº of trees), the maximum depth of a single tree, the minimum number of samples necessary                 
to divide an internal node and to be at the leaf node and the maximum number of features that are                    
considered when deciding a split. Since this exhaustive search has a high computation and big time                
expense, a tool from the same library was used where previously selected parameter are randomly               
selected and their performance compared. Due to this, the best parameters found may still not be the best                  
ones to optimize the algorithm since not all combinations are performed. 

The search for better results worked by using the “Random Search Cross Validation” for better               
parameters and seeing the performance of the result when training on the whole train data and then                 
predicting the class on the train and development data and analysing the error rate. After many runs I got                   
to a conclusion that more than 2,400 estimators would easily overfit the data and less than 1,000 didn’t                  
give so much of good results. Other found parameters were minimum samples for split and leaf of 15 and                   



2, respectively, and maximum depth of 10. After having narrowed this search on one value for each                 
parameter I began to realize that getting best results would be a matter of luck, since they started being                   
not so different from each other, therefore, I sticked to the lowest error rates that I got and ran the                    
algorithm on the 5D data. 

Multilayer Perceptrons: Neural Network algorithms, as their names already implies, are developed            
using neurons as their basic idea. An input goes through a single neuron, where it is multiplied by a                   
“synaptic” weight and the result leaves it as the output. With a single neuron it's hard to achieve anything,                   
that's why a great number of this little computations working together form what we call a neural                 
network. Also, a bunch of neurons randomly organized wouldn’t perform great results, for that reason we                
can order them in different layers, each with a different numbers of neurons forming a type of neural                  
network called Multilayer Perceptron (MLP). In this case, a feature vector (with 2 or 5 features) enters the                  
initial layer where each neuron computes a value that goes to next layer ando so on until the last layer                    
provides a single output that represents the class assignment. Since a lot of this calculations begin to deal                  
with a certain non-linearity, activations functions are used to set thresholds on the outputs for determining                
whether the result should be passed ahead or not. Of course that for all of this to work, the network need                     
to learn about the data that is classifying, for this we train the data using other functions like                  
backpropagation in a supervised learning. It works, in a summary, by starting the neural network with                
random weights and then the features of a known class are inserted and go through the whole network, the                   
result is compared to the expected and the difference is use in some calculations to adjust the parameters                  
on the way back at a certain rate. 

For this algorithm I started from the most basic neural-network, to see if my implementation was correct                 
and then began to improve it. I started with a single hidden layer with 2 neurons and ran the algorithm.                    
after correcting bugs issues and making it work, the search for better results started. To make the testings,                  
I split the train set in two: 90% of training and 10% of testing. I realized that when I built more than 4                       
hidden layers the results started to be not so much accurate anymore, probably due to overfitting. Also,                 
because there were so many data points, my hidden layers were about 50 to 100 neurons each. I also tried                    
different activation functions such as “Rectified Linear Unit”, “Sigmoid” and “Hyperbolic Tangent”,            
mixing them between layers. ReLU and Sigmoid showed better results when combined in the same               
algorithm. After having the model defined, I tried to ran the algorithm to predict the development data,                 
but did not got the results I expected, so I put together again the whole training data and changed the other                     
parameters (learning rate, batch size, momentum and epoch) to try to balance the error rates from the                 
training and the development set. Again, every variation was considered to try to have a good result as the                   
same time the neural network doesn’t overtrained itself so other data sets could be rightly classified. Once                 
more, after narrowing the parameters, I calculated that the differences between the error rates were not                
statistically significant anymore and tried to ran my algorithm on the 5D data, making some adjustments                
given the new number of features. 

Results: After running the implemented algorithms on the given data sets, the results obtained were               
displayed on the table below. The Random Forest algorithm got better results on the training set due to a                   
little more over training then MLP, even though this situation was trying to be avoided. Using the concept                  
of statistical significance to analyses the results, it can be said that, with a confidence level of 95%, the                   
only results statistically significant difference were from both the training sets. This means that it can not                 
be determined if one algorithm did a better performance than the other give these datas, since their error                  
rate differences weren’t big enough to reject the null hypothesis. Relatively, the differences between the               
error rates found aren’t sufficient large in contrast with the number of samples in the experiment. 



 2D Data 5D Data 

Algorithm Train Dev Eval Train Dev Eval 

Scikit-Learn: Random Forest 5.44% 8.40% 8.65% 33.28% 36.83% 37.00% 

Pytorch: Multilayer Perceptrons 8.14% 8.30% 8.05% 36.22% 36.87% 36.82% 

Table 1 - Error Rates results of the classification of each data set given the algorithm implemented 

Conclusions: Even though it can’t be said that one algorithm had clearly a better performance than the                 
other, the lower error rates on the neural-network algorithm show that this algorithm may have a better                 
potential to improve the results if a better hyperparameter search can be made with a more power                 
processing computer. Also, it can be concluded that it can be really difficult to find better parameters                 
without overfitting the training data into the model and to find this best balance can cost a lot of time and                     
processing. Overall, looking at the results obtain, even though they didn’t overcame last semester results,               
they were actually pretty good error rates considering the general results obtained by last semester               
students. Also, the challenge brings an opportunity not only to try to get better results than other but as                   
well as to try to beat our own algorithms. 


