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Introduction: Students of the machine learning class were given two different types of data sets to work 
with and pitted against each other to see who could produce the lowest error rate through whatever means 
necessary. The only real requirement was that students must produce both a Neural Network approach as 
well as a Traditional machine learning method. The two data sets that were provided were one 2-
dimensional data set and another 5-dimensional data set. The real challenge was more focused on the 5-D 
data set however the 2-D set was meant to provide some practice and supposedly the sets were created in 
a similar fashion. 

Upon observing the 2-D data it was noticed that the data could be almost distinctly separated into 4 
clusters per class. This led me to believe that when it came to a traditional approach, I would require an 
algorithm that could produce highly nonlinear decision regions. For this reason, the first algorithms to 
come to mind were kNN and SVM. As there was a decent amount of overlap, I believed SVM would 
outperform kNN so that was the intuition behind choosing SVM for the traditional machine learning 
method. 

Regarding the Neural Network approach, a lot of parameter tweaking had been made with the base script 
as well as a lot of compute time when becoming familiar with the given multi-layer perceptron. For this 
reason, the MLP was kept and used to classify the given evaluation data. 

Support Vector Machine (Python - sklearn.svm v0.0): Support Vector Machine is an algorithm which 
attempts to separate the given data it is fit to with a hyperplane. The key is that most times there are an 
infinite number of hyperplanes that separate the data but SVM finds an optimal generalized hyperplane. 
This is done through maximizing the margin between the decision plane and the two classes. What this 
does for us is that it generalizes the decision region by making sure it isn’t too close to either of the 
classes we are trying to differentiate. This is very intuitive when it comes to data that is linearly separable 
but when this is not the case such as with the data we have in this problem, the way to accomplish the 
separation is by projecting the data to a higher dimensionality. The goal is to project the data into a higher 
dimension to accomplish linear separation and then the rest is the same as with linearly separable data. 

When it came to adjusting parameters of the model from sklearn, I initially decided to use a fourth-degree 
polynomial kernel type as I though that a polynomial function would wrap around the data clusters more 
easily, producing a decent decision region. The results were slightly better than the baseline but I also 
used a Radial basis function kernel to see what the results were like just because the data was circularly 
shaped in the 2-D data. This blew the performance of the polynomial kernel out of the water so I decided 
to keep this as my kernel function. Another parameter that was altered was the gamma value which 
changes the influence of a single training sample. The only difference was that I decided to not use the 
variance of the data when it came to adjusting gamma as the system preformed worse. The system was 
trained on the combination of the training data set as well as the development set. Computational 
complexity was not too bad for the 2-D data set however; the 5-D set would make you wait for about 25 
minutes to obtain results. 

 Multi-Layer Perceptron (Python - PyTorch v1.3.1): The idea behind a Multi-Layer Perceptron (MLP) 
is that the system will preform stochastic gradient descent in order to update the wights of our neurons. 
The changes made to the weights are meant to minimize an error function in our system. In doing this the 
idea is that the system with optimal weights will give a correct output for a given input sample. The way 



that training occurs is through backpropagation of the error in the system. Some parameters we can tweak 
is how much we allow the weights to change on a given iteration as well as how to control their 
magnitude, how many data points we train on in a given iteration, as well as how many times we cycle 
through the training and how many nodes the system has. Another very interesting thing that effects the 
system is the order that the training data is fed into the system. The first change made to the system was a 
drastic lowering of the learning rate as I found that everything was changing too fast in the system to 
learn anything significant. After lowering the learning rate, we can run the system with more epochs and 
give it more time to settle on an optimal solution. While changing all of the values regarding how the 
weights change during a single iteration, I also adjusted the weight decay which is the value that the 
weights are multiplied by after updating which just restricts their magnitude. The weight decay was 
lowered by an order of magnitude to get the system to where it was performing alright. When it came o 
the number of nodes, I knew there was an optimal number below 100 but also above 26. After trial an 
error and training on a relatively low number of epochs to find this, the number of 75 was settled upon 
due to the performance increase.  

Upon settling on the chosen parameters, a model was trained with 250 epochs. The performance was not 
bad however the loss still produced a significant value of around 0.6 which means the model can be 
trained for much longer. Before touching the number of epochs however, the training data was adjusted to 
include the development data as well. On top of the addition, the development data was sorted and added 
at the end of the training data and then a model was trained on this. I also tried to sort all class 0’s first 
and then all class 1’s in the training data but this actually performed worse so the training data was just 
the sorted development data appended to the end of the training data. A model with 10,000 epochs was 
trained and this performed even better but the loss still had a way to go. The final model was trained with 
20,000 epochs and the performance still increased with some loss still to go. At this point however, there 
was not much more time to train another model so the final model was kept. 

Results: Below we will see Table 1 with the results on all data sets for both systems. What is 
immediately noticed is that the traditional approach seems to outperform the Neural Network approach 
but this should be expected with the amount of data we have.  

 2D 5D 
Algorithm Train Dev Eval Train Dev Eval 
Scikit 
SVM 

8.11% 7.90% 8.35% 36.56% 36.35% 36.68% 

PyTorch 
MLP 

9.02% 9.70% 9.05% 36.80% 36.79% 36.85% 

Table 1: These are the results generated from the traditional machine learning approach (SVM) as well as the Neural Network 
approach (MLP). As can be seen, SVM outperformed the MLP in all cases. This however is likely true due to not only the structure 
but also the limited amount of training data as we know Neural Networks thrive with “big data” 

Conclusions: After running the experiment, I was very pleased with the results on the 5-D evaluation 
data by the SVM. I feel that the only thing that could have been done better was to maybe filter the 
training data for outliers. When it came to the MLP I felt that performance could have been improved by 
doing two things. First of all, the training data could have been filtered but also if a way was found to 
model the training data and generate more of it, then I feel the model would perform statistically better 
than its current state. Time is a constraint however so this was not able to be implemented in time let 
alone have the time to train another model for the 5-D dataset. In the end however I feel that this 
problem provided a great deal of practice when it came to solving a machine learning problem as any 
method could have been performed. I also learned a great deal about what algorithms to pick, what it 
takes to train a neural network and how to use SVM as there were not homework’s on these methods. 


