ECE 8527: Final Exam - Results of the Final Exam Data Challenge (Set 07)


The data set for this challenge can be found here. Note that random guessing yeilds an error rate of 50.00%.

Data Set 2D 5D
Participant Algorithm Train Dev Eval Train Dev Eval
Elseify, Tarek (Baseline - Fall 2019)) PyTorch: Multilayer Perceptrin (MLP) 09.34% 10.05% 09.15% 37.47% 37.14% 37.42%
Elseify, Tarek (Baseline - Fall 2019)) TensorFlow: Multilayer Perceptron (MLP) 08.63% 09.10% 09.00% 36.89% 37.30% 36.87%
Bala, Animesh (Fall 2019)) Scikit-Learn: Random Forests (RNF) 06.86% 08.90% 08.50% 30.27% 36.88% 36.48%
Bala, Animesh (Fall 2019)) PyTorch: Multilayer Perceptron (MLP) 08.07% 07.90% 08.40% 39.91% 39.93% 39.94%
Begaj, Brandon (Fall 2019)) Python: Support Vector Machines (SVM) 08.11% 07.90% 08.35% 36.56% 36.35% 36.68%
Begaj, Brandon (Fall 2019)) PyTorch: Multilayer Perceptron (MLP) 09.02% 09.70% 09.05% 36.80% 36.79% 36.85%
Bruno, Casey (Fall 2019)) Scikit-Learn: Random Forests (RNF) 07.22% 08.55% 08.35% 24.62% 36.96% 36.60%
Bruno, Casey (Fall 2019)) PyTorch: Extreme Learning Machine (ELM) 08.22% 08.50% 08.40% 36.47% 38.48% 38.32%
Campbell, Christopher (Fall 2019)) Python: K Nearest Neighbors (KNN) 07.69% 07.85% 08.50% 38.49% 38.93% 39.16%
Campbell, Christopher (Fall 2019)) TensorFlow: Generative Adversarial Networks (GAN) 09.57% 08.80% 09.25% 40.11% 40.20% 40.07%
Jiang, Kuang (Fall 2019)) Scikit-Learn: Random Forests (RNF) 06.66% 06.40% 08.30% 13.72% 37.42% 37.65%
Jiang, Kuang (Fall 2019)) PyTorch: Multilayer Perceptron (MLP) 07.83% 07.50% 08.15% 36.43% 36.19% 37.11%
Khalkhali, Vahid (Fall 2019)) Scikit-Learn: Gaussian Mixture Models (GMM) 07.97% 07.65% 08.05% 37.23% 36.80% 37.13%
Khalkhali, Vahid (Fall 2019)) PyTorch: Multilayer Perceptron (MLP) 08.07% 08.15% 08.30% 36.31% 36.60% 36.96%
Mills, Kenneth (Fall 2019)) MATLAB: Support Vector Machines (SVM) 07.92% 08.15% 08.45% 36.92% 36.72% 37.13%
Mills, Kenneth (Fall 2019)) MATLAB: Deep Neural Network (DNN) 17.61% 16.75% 17.45% 41.68% 41.58% 41.91%
Pale, Andrew (Fall 2019)) MATLAB: K Nearest Neighbors (KNN) 07.93% 07.90% 08.05% 34.42% 38.24% 38.31%
Pale, Andrew (Fall 2019)) MATLAB: Multilayer Perceptron (MLP) 08.35% 08.00% 07.75% 36.96% 37.33% 37.81%
Xiao, Ya (Fall 2019)) Scikit-Learn: Random Forests (RNF) 00.00% 08.25% 09.10% 00.00% 38.38% 38.54%
Xiao, Ya (Fall 2019)) PyTorch: Multilayer Perceptron (MLP) 08.09% 08.25% 08.30% 40.24% 40.36% 40.25%
Xie, Zhanteng (Fall 2019)) MATLAB: K Nearest Neighbors (KNN) 08.03% 08.10% 08.05% 36.89% 37.08% 36.71%
Xie, Zhanteng (Fall 2019)) PyTorch: Multilayer Perceptron (MLP) 08.22% 08.05% 08.10% 37.22% 36.97% 37.26%
Zhou, Tongdi (Fall 2019)) MATLAB: Gaussian Mixture Modeling (GMM) 08.00% 07.80% 08.20% 36.84% 36.00% 36.30%
Zhou, Tongdi (Fall 2019)) MATLAB: Recurrent Neural Network (RNN) 08.09% 08.25% 07.80% 36.78% 36.79% 36.74%
Zlotnikov, Sivan (Fall 2019)) MATLAB: Kernel Linear Discriminant Analysis (LDA) 09.24% 09.45% 09.50% 38.04% 37.63% 38.13%
Zlotnikov, Sivan (Fall 2019)) MATLAB: Multilayer Perceptron (MLP) 08.54% 09.25% 08.90% 39.99% 39.75% 40.45%
Campbell, Chris (Fall 2019) Python: Majority Vote (MAJ) 07.62% 08.05% 07.80% 33.74% 36.57% 36.57%