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Introduction: The data for this report comes from EEG signals used for seizure detection. Those signals 

are transformed using LFCC algorithm to obtain 26 features. The data is then divided into training set, test 

set and evaluation set. The training set contains 19320 observations, the development test set contains 2118 

observations, and the evaluation set contains another 1174 observations, all of which are labeled by 0 or 1. 

The objective of this report is to construct a classifier for the data set with reasonable performance, this is 

evaluated on both training set and the development test set as well as the evaluation set. The training data 

and test data are both provided with a class label of 0 or 1 with evaluation set containing dummy class labels 

which are not used for building the prediction model. For this report, two classification methods are utilized 

to build the prediction model and we compared their performances on the dataset. The first method we use 

is the traditional K-Nearest Neighbor approach, for the choice of k we eventually set it to be 1000, as we 

discovered that this gives the most stable performance. For the second method, we implemented MLP 

neural networks and investigated how different topologies, optimizers, loss functions and batch sizes can 

affect the network performance. These comparison results are all shown in the attached figures. 

These algorithms are implemented using a special build of Python 3.4 under Anaconda. We implemented 

the KNN method using the scikit-learn package provided at http://scikit-learn.org/stable/index.html. This 

package allows us to configure the KNN model in one single line while maintaining various customization 

options. For MLP neural network, we utilized the tools provided by Keras, which runs on TensorFlow 

backend. These tools also simplified our task of configuring and training the neural network models. 

Algorithm No. 1 Description: For our first algorithm, we implemented the traditional K-nearest neighbor 

method. To investigate the effect of the value k on the model performance, we set it to range through 10 to 

1000, for each value of k, we predicted the labels of the test set as well as training set, and recorded the 

error rates. These error rates are then used to compare the performance of each corresponding model. Those 

K-nearest neighbor models are trained using Euclidean distances with weights based on distance, this means 

the votes from other points are weighted by the inverse of their distance. For this dataset, we eventually 

picked k=1000 for our final model, as this number gives the most stable performance. 

Algorithm No. 2 Description: For our second algorithm, we set up a MLP neural network consisting of 2 

hidden layers, plus one input layer of 26 nodes and an output layer of 2 nodes. Each hidden layer is coupled 

with a 0.2 dropout rate to avoid overfitting. We also implemented autoencoders for pre-training the layers 

to improve accuracy. Each model is trained with 20 epochs. To understand how the many options for this 

model can the performance, several configurations are studied. each configuration is iterated 50 times to 

obtain an estimate for the distribution of corresponding error rates. The options we inspected include the 

effect of batch size, different loss functions, different types of optimizer, whether we normalize the data, 

and different setups for layer topologies. Due to the time consideration all the following comparisons are 

performed using a batch size of 120, but the final model will be trained on the optimal batch size. For 

activation functions, we used “Relu” for hidden layers and “sigmoid” for output layer. 

Results: Our experiments were performed on a personal laptop with these specifications: (CPU: Intel Core 

i7-7700K 4.20GHz, Memory: 16 GB; GPU: NVIDIA GeForce GTX 1060, 6144 MB).  

KNN classification result for both test set and the closed-loop are shown in Figure 1. Interestingly, in the 

cases we observed, the error rate seems to fluctuate around 0.45 for test set, and get more stable with 

increase number of neighbors. What’s more, the algorithm gives very accurate prediction for the training 

set, which is expected, since this method essentially assign most points in training set to whatever group it 

is from. 



For deep neural network model, we first investigated the effect of batch size on the error rate, the models 

are trained with optimizer Adam, with loss function of mean square error. The layers are set up to be 26 

inputs, 32 dense hidden layers, 52 dense hidden layers, then 2 outputs. Results are shown in Figure 2 We 

can see larger batch size causes over-fitting, which gives better performance in closed loop tests, but tend 

to worsen the error rates for open loop tests. We also tried some different loss functions by comparing the 

performance of mean square error and binary cross-entropy. Their performances are recorded on Figure 3, 

mean square error performs slightly better on the test data than binary cross-entropy. Next, we investigated 

some different layer topologies, with layer setups: a) [26,32,52,2], b) [26,26,32,2], c) [26,26,16,2], d) 

[26,16,10,2]. To clarify, setup a) would mean that first layer 26 nodes, second layer 32 nodes, third layer 

52 nodes, etc. The error rates of these setups are recorded and shown Figure 4. Obviously, setup a) have 

the most prominent overfitting issue, but the rest of the topologies have a similar mean error rate. Layer 

setup b) was picked because it has the lowest minimum error rate among the simulations, while having 

reasonable variance and skewed to lower error rate. Lastly, the effect of data normalization is studied. We 

scaled and centered each column based on the means and variances of the training set. Again, each scenario 

is repeated 50 times, and the corresponding error rates are recorded, which is shown in Figure 6, Judging 

from the box plots, the normalization doesn't help much on the fit. Therefore, we choose not to perform the 

normalization process in the final model. 

In the end, we built our neural network model as a MLP with four layers (two hidden layers): 26, 26, 32, 2, 

with 1632 parameters in total. The model uses MSE as loss function and for optimizer we use Adam, the 

model is trained with 20 epochs with batch size 20. The overall error rate for closed loop is between 0.33 

to 0.36, and 0.36 to 0.40 for test data, which can be seen in Figure 7. 

The results for both methods on the evaluation 

set are shown in Table 1. For KNN, the actual 

error rate on the evaluation set is 0.486, with 

Type I error as 0.637, and Type-II error as 

0.335. For MLP neural network, the error rate 

is 0.460, with Type I error as 0.499, and Type-

II error as 0.439. The overall error rates are 

about the same level, but KNN seem to have 

more false detections. 

Conclusions: We studied the performance of two classification models on an EEG dataset, one of those is 

traditional k-nearest neighbor, another one is MLP neural network. In the end, their overall performances 

on the evaluation set are similar, both with considerably high error rate. The error rate for KNN is expected, 

but the error rate displayed for MLP is much higher than what the simulations on the test and training data 

indicated. The low performance again shows the overfitting problem we can have with neural networks. 

For KNN method, it might improve the results if we find some different distance measure and increasing k 

value, and for neural network, it is probably a good idea to implement higher dropout rate, as well as looking 

for better network structures.  

Another interesting aspect to notice is that the actual error rate for the neural network results varies a lot (if 

no random seed is fixed aforehand). And from Figure 7 we can see that a random shift in error rate of about 

1% ~2% is really a normal thing to happen. This gives rise to the question we’ve asked during earlier this 

semester that how much of an improvement on the error rate can be considered significant. Judging from 

the variance on the test set and the random guess error rate of 49.82%, we can say our model is significantly 

better than random guess.  

 Data Set 

Algorithm Train Dev Test Eval 

KNN 00.41% 45.56% 48.64% 

MLP 38.40% 35.60% 46.00% 

Table 1. Algorithm performance on training, testing and 

evaluation data, KNN with K=1000 gives best approximation for 

the training set, while MLP gives better results on testing and 

evaluation sets. 



 

 

  

 



 

 

 

 


