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Introduction: Throughout the course, many different machine learning classification algorithms were 

discussed. These algorithms consisted of traditional classifiers, such as support vector machines, k-nearest 

neighbor, and Bayesian classifiers, and neural network classifiers, such as multilayer perceptrons, 

convolutional neural networks, and other deep learning algorithms. Each of these algorithms has its own 

strengths and weaknesses; for example, deep neural networks are good at modeling complex decision 

surfaces, but are very data-hungry and can often get caught in local minima when minimizing the loss 

function. In this final project, two binary classification algorithms will be used to perform seizure 

classification on EEG data: a traditional classifier and a neural network. For the traditional classifier, a 

random forest classifier was used, and for the neural network classifier, a multilayer perceptron was used. 

These algorithms will be discussed in more detail in later sections. 

Two datasets were provided for this project: a train dataset and a development dataset. A third dataset, the 

evaluation set, was withheld to be used as a final evaluation of performance. The train dataset was used as 

its name suggests, to train the classifiers. The development dataset was used to test the trained classifier 

before submitting it for evaluation. Each dataset is a text file that consists of multiple samples; each sample 

is made up of a 26-element feature vector and a boolean indicating whether the sample corresponds to a 

seizure or no-seizure event. After training the classifier to a point that it performs well on the development 

data, it was submitted for evaluation to measure the final performance of the system. 

Algorithm No. 1 Description: Multiple classification algorithms were investigated for the traditional 

classifier. These algorithms consisted of a support vector machine, k-nearest neighbor, and random forest 

classifier. Out of the three algorithms, the random forest classifier performed the best on both the train and 

development datasets for the tested parameter values, so it was chosen for the traditional algorithm. The k-

nearest neighbor algorithm was much more susceptible to overfitting than the other two algorithms, which 

is another reason it was not chosen. Further reasons for selecting random forest are that it has many 

parameters that can be adjusted, and it can be parallelized easily since it is an ensemble of multiple decision 

trees. The parameters to be tuned consisted of the number of estimators in the classifier, the minimum 

number of samples required to split each node in a tree, and minimum number of samples for a node to be 

a leaf node. To determine these parameters, the classifier was evaluated at various parameter values, and 

the parameters that gave the best results were chosen to be the parameters used for classification. Table 2 

shows the parameters chosen from this analysis.  

Algorithm No. 2 Description: For the neural network classifier, a multilayer perceptron was used. Several 

other deep learning algorithms were considered. One of these was a convolutional neural network, but it 

did not seem to fit the application since the data we were given does not contain spatial or temporal 

information. The topology chosen consisted of one input layer of 26 units, three hidden layers, and an output 

layer of one unit. The three hidden layers consisted of a dense layer with 100 units, a dropout layer for 

regularization, and a bottleneck layer whose number of units was varied. The final topology used can be 

seen in Figure 1. Several optimizers were tested with this topology, and it was found that the Adam 

optimizer performed the best for the given architecture and application.  

Before training the system, the training data was augmented by duplicating the data, adding Gaussian white 

noise to it in the form 𝑁(0,0.01), and concatenating it to the original data. This was done to add extra 

variation to the data to reduce overfitting and increase performance on the development set. To determine 

the parameters for this network, such as initialization algorithm, regularization algorithm, activation 



functions, batch size, and more, two approaches were taken. The first approach was to choose an 

initialization, activation, and regularization algorithm based on results on similar applications (such as those 

discussed in Lecture 42), and then vary the batch size, number of epochs, and units in the bottleneck layer 

to find the best parameters. When training the classifier through Keras, a callback was used to save the 

weights from the epoch that gave the best performance on the development dataset. The second approach 

taken was to automate this process by continuously creating classifiers using random parameters in an 

infinite loop and then saving the best one. This method provided the best results, which can be seen in Table 

1. 

Results: When compared to the multilayer perceptron, random forest classifier performed the best on the 

training data with an error rate of 24.37%. Despite slightly overfitting on the training data, the algorithm 

did not perform too much worse than the neural network on the development set as can be seen in Table 1. 

Unfortunately, these results did not carry over to the evaluation set where the error rate was over 10% higher 

than the development set. 

The multilayer perceptron performed the best on the development dataset with an error rate of 34.09%. This 

can most likely be attributed to its innate ability to model complex decision surfaces, but it did not perform 

as well on the training data. This is 

because the MLP did not overfit like the 

random forest classifier did. Surprisingly, 

the results from the development set did 

not carry over to the evaluation set for this 

classifier either. The error rate increased 

by about 10% from the development set 

to the evaluation for this classifier as well. 

The final performance of the MLP can be 

seen in Table 1. 

Conclusions: Two classifiers were created to perform binary classification on seizure data extracted from 

EEGs. A random forest classifier and a multilayer perceptron were the selected classifiers to be construced 

and evaluated.  Despite both classifiers producing error rates around 35% for the development data, the 

error rates were much higher for the evaluation datasets. This came as quite a shock, but it can most likely 

be associated with the fact that the classifiers were specifically tuned to produce good results on the 

development data. It is possible that these parameters did not generalize well for datasets other than the 

train and development datasets; in effect, producing much worse results on the evaluation set. For future 

work, it would be best to set aside part of the training data as a second validation set instead of using it for 

training. Then, when the classifier produces acceptable results on the development dataset and second 

validation set, it could be submitted for evaluation. This would help assure that each classifier generalizes 

well. 

As an attempt to build a better classifier from the results of the random forest and neural network classifiers, 

a voter system was created. This system performed principal components analysis on the feature vectors 

for each sample in the datasets to reduce them to a single unit. The predictions produced by the MLP and 

random forest classifiers were then appended to the corresponding feature vectors. A neural network was 

then used to perform classification on these values. This system produced the same results as the MLP for 

the development data, but it produced worse results for the evaluation dataset.  The voting system gave an 

error rate of 45.23% for the evaluation set. It is possible that a voter system would have produced better 

results if implemented in a way different than the way it was implemented in this assignment. In complex 

systems, different types of classifiers are often chained together to produce better results. For future work 

on this problem, this method should be investigated further. 

 Data Set 

Algorithm Train Dev Test Eval 

Random Forest 

Classifier 
24.37% 36.45% 47.10% 

Multilayer 

Perceptron 
41.19% 34.09% 44.12% 

Table 1. Error rates of both classifiers on all three datasets 



 

 

Figure 1: Final neural network topology 

 

 Parameters 

Name 
Out 

Act. 

Other 

Act 
Reg 

Bath 

Size 

Max 

Epochs 

Learn 

Rate 

Dropout 

Rate 

Bottleneck 

Units 
Initializer 

Value tanh relu None 128 1000 10−4 0.45 17 Normal 

Table 3. Parameters chosen for the neural network. 

 Parameters 

Name Min Split Min Leaf 
Number of 

Estimators 

Value 
1.00% of 

train set 

0.10% of 

train set 
70 

Table 2. Parameters chosen for the random forest classifier 


