
Predicting the Presence of Seizing from a Single LFCC Feature Vector 

Elliott Krome 
Department of Electrical and Computer Engineering, Temple University 

krome@temple.edu 

Introduction: This is a binary classification problem whose goal is to map a single feature vector to an 
outcome: {seizure, no seizure}.  The LFCC (linear frequency cepstral coefficients) feature vector is 
extracted from a single window of time from a single channel of an electroencephalogram, or EEG. An 
EEG is a multi-channel signal which describes the electrical activity in the brain via voltages measured in 
a variety of locations on the scalp.  

Seizures do not occur very often - this is good from an empathetic perspective, but presents a significant 
problem from an applications perspective. However, here we greatly simplify this problem in training and 
validation by using data sets where the binary priors are approximately equal – the LFCC feature vectors 
extracted from moments of seizing are present in relatively very high proportion compared to those 
extracted from more typical EEG behavior.  

This simplifies the problem insofar as the training feature vectors are (hopefully) more likely to be around 
an ideal decision surface. However, generalizability of training using this overrepresentation of seizure data 
is questionable, especially given the lack of temporal or spatial (other channels) context. This is a naïve 
approach. Because these are isolated feature vectors that are not related temporally or spatially, there is no 
need to model sequential structure, and simpler models such as random forest and multilayer perceptron 
are sufficient. Two learning algorithms were used: a multilayer perceptron (MLP), and a random forest.  

Random Forest: Random forests use a set, or ensemble, of decision tree learners to overcome the problem 
of high variance / overfitting present in the use of a single decision tree. Two different constraints are placed 
on the training of an individual tree to encourage overall robustness: (1) an individual tree only sees a subset 
of the training examples, and (2) each individual split in the tree is only made based on a subset of the 
features. This first constraint, known as bootstrap aggregating (bagging), resamples the data into many 
smaller subsets, allowing for each sub-model to get its own “view” of the data before model-averaging –
this serves to reduce the high-variance problem of individual decision trees. The second constraint, known 
as the random subspace method, encourages independence from tree to tree – each branch is made by using 
only a randomly draw subset of features. These two constraints are similar in that each limits the individual 
tree’s access to data to encourage the aggregated learned representations to be more diverse, and hence 
more generalizable. A (perhaps too poetic) sidenote: the metaphor of a forest is doubly apt: where each tree 
in a physical forest only has a limited view of the input to capture (the sun), each tree in a random forest 
only has a limited view of the source of discriminative power (the training set), and in both situations the 
diversity of the aggregate forest serves to maximize capture of input “power”.  

The implementation used comes from Python’s sklearn library. It constructs 100 individual decision tree 
classifiers based on the training data, and outputs an overall classification based on the averaging of these 
individual trees. The size of the dataset was enough to support this quantity of trees, and training took 
minimal computation time. this The maximum number of features looked at when determining a single split 
for a single tree was 5, which is approximately the square root of the feature vector size 26. It should be 
noted that this number of features was expanded if a suitable split was not found within the initial set. The 
minimum “leaf size” after each split was 9 – the larger this value, the shallower the trees. Unlike in the 
usual decision tree paradigm where increased depth of the tree is associated with overfitting, in random 
forests the overfitting of the individual trees is, in aggregate, an asset. The primary cost of increasing tree 
depth is increased computation time, but that was not a significant problem. 



Multilayer Perceptron: This network, which uses Python’s Keras library, had three hidden layers. The 
size of these hidden layers tapered at each step: 26 input nodes → 22 hidden nodes → 26 hidden nodes → 
10 hidden nodes → 2 output nodes. Each of these hidden layers had a rectified linear unit (ReLU) activation 
function as input. The final output layer had a softmax activation function as input. It was trained using a 
binary cross entropy loss function, with the Adam optimizer. 

Each of the hidden layers was trained using dropout, which randomly nullifies certain nodes for each batch. 
For every batch, for every layer, 20 % of the units were nullified. This prevents the network from relying 
on specific information paths – it encourages learning multiple representations, and in this way is similar 
to the random subspace method used in the random forest algorithm. It is often argued that this dropout 
technique is most beneficial with complicated networks – this would make sense as it allows larger number 
of pathways of information and multiple representations of the crucial information. However, in this case, 
the tapered structure proved sufficient. Following Occam’s Razor, if more information does not provide 
much benefit, the simpler structure should be chosen. To be explicit: a network with larger hidden layers 
could have been employed, but this was 
experimentally found to not be particularly 
useful. 

To decide the number of epochs (loops over 
the training data) to use when training this 
algorithm I examined the error rate trends 
over the first 125 epochs for both open loop 
and closed loop training. This is shown in 
figure 1. Figure 1 shows that the trend of the 
error rate in open loop training stops 
decreasing around epoch 25, while the closed 
loop continuously decreases as the number 
of training epochs increases. This gives an 
indication that the algorithm begins to overfit 
the training data somewhere around epoch 
25. Because of this, I limited the number of 
training epochs to 23.                           

Results:                                      

Table 1 shows the performance of each of the 
algorithms on the various datasets. 
Performance on the eval set was poor for both 
algorithms. It is possible that the evaluation set 
was significantly different than the training or 
dev sets. Perhaps the prior probabilities are 
closer to the real-world probabilities, as 
discussed in the introduction. While the multilayer perceptron performed significantly better than the 
random forest on train and dev sets, the random forest proved to generalize slightly better to the eval set.  

Conclusions: The performance of both algorithms is fairly comparable in this experiment – neither did 
much better than chance. It is not clear how to improve the training of either the random forest, outside of 
chasing the diminishing returns of adding more trees and increasing tree depth, or the training of the 
perceptron, outside of providing more and larger layers, although there are some interesting tricks that we 
can play with the training data, such as augmentation via additive Gaussian noise. This difficulty suggests 
that if we are to classify this kind of data it would be advantageous to make use of sequential structure.  

 Data Set 
Algorithm Train Dev Test Eval 

Random Forest 38.18% 36.50% 45.91% 
Multilayer 
Perceptron 39.40% 36.26% 46.68% 

    

         Table 1. Performance of the algorithms on each dataset. 

Fig. 1 Error rate in open- and closed-loop vs. number of epochs 


