
Seizure detection by EEG data classification using traditional kNN classifier and neural network

Sayemul Islam

Dept. of Electrical and Computer Engineering, Temple University

sayemul@temple.edu

Introduction: EEG or Electroencephalography is a method of monitoring electrical activity of brain or

neural signal. EEG reflects correlated synaptic activity caused by post-synaptic potentials of cortical

neurons. Typically, non-invasive electrodes are places along the sculp to measure the electrical activity.

Although brain’s activity is spontaneous and there are always some electrical activities on the neurons, it is

observed that, unusual events are usually reflected on the EEG signals such as epileptic seizures. In this

paper, we describe two methods to classify EEG signal into ‘Seizure’ and ‘Non-Seizure’ events. We will

be using classical kNN classifier and find the classification error rate for training data, dev data and

evaluation data and compare the results found using a Neural Network system developed using MATLAB’s

Neural Network Tool. The given dataset for the exam is collected from TUH EEG Seizure Corpus. We will

train and evaluate the data on the training set and dev test set. The data contains roughly 19,000 training

vectors, 2,000 development test vectors and 1,174 evaluation set vectors. Given EEG data is shown in

Figure 1, Figure 2 and Figure 3. The vectors are single feature vectors taken from the middle of seizure

event. The given data is in ascii format where the first column is the class label. The remaining columns

are the corresponding feature vectors. Here we will be describing the methods we used to classify the data

and built a classifier that will be able to characterize an EEG evaluation set.

Method 1 (kNN Classifier): kNN or k-nearest neighbor algorithm is a non-parametric method used for

classification and regression. The input consists of k closest training examples in the feature space. The

output depends on whether the kNN is used for classification or regression. kNN is a type of instant based

learning or lazy learning where the function is only approximated locally, and all computation is differed

until classification. It is also one of the simplest method of machine learning algorithm. The training

examples are vectors in a multidimensional feature space, each with a class label. The training phase of the

algorithm consists only of storing the feature vectors and class labels of the training samples. In

classification phase, k is a user defined constant and an unlabeled vector is classified by assigning the label

which is most frequent among the training samples nearest to that query point. Figure 5 shows the error rate

as function of number of neighbors, k respectively for the training data, dev data and the testing data for

the kNN classifier. We can see from Figure 5 that as the number of ‘k’ is increasing, the error rate of training

data is increasing. Therefore, usually, high number of training samples are used to train classifier. Due to

high number of training samples and proximity of the given training data, as number of k increases, there

are more chances that the nearest neighbors can come from the other categories, increasing chances of the

error. However, we can also observe from the Figure 5, compared to the training data, test data are

independent and small in number. The test data usually comes from the actual class distribution. As number

of nearest neighbor ‘k’ increases, density of the data from the same class is higher near any point, x, of that

particular class. The chances that the closest neighbors belong to the same class also increases, increasing

the chances of correct class assignment (using majority voting scheme) and reduction of the error rate. From

the plot, the error rate settled around 38% using KNN classifier at k=75, for given training data.

Method 2 (Artificial Neural Network): A neural network for machine learning algorithm can be

constructed in several ways. The main objective will however remain the same which is: sequential

processing of the data, feature extraction, event spotting and post processing. A generic architecture of

machine learning algorithm can include the input layer, few hidden layers and the output layer. The hidden

layers can consist of sequential modeler, epoch posteriors, stacked denoising encoders, finite state machine

etc. The neural network that we have built for this purpose used Long Short-Term Memory (LSTM)

networks. We can use LSTM networks to train a deep learning network to classify sequence data. An LSTM

network is a type of recurrent neural network (RNN) that can learn long-term dependencies between time

steps of sequence data. In a traditional neural network system, the gradient signal can end up being

multiplied many times by the weight matrix during gradient back propagation phase which is associated

with the connections between the neurons of the recurrent hidden layer. Which means, magnitude of

weights in the transition matrix can possibly have acute impact on the neural network’s learning process. If

the weight in the matrix is too small, it can lead to vanishing gradients situation where the gradient signals

get so small that the learning becomes incredibly slow or stops working. It also makes it more difficult for

the network to learn long-term dependencies in the data. If the weight in the matrix are large it can lead to

a situation where the gradient signal is so large it may diverge the learning process. This is often referred

to as exploding gradients.

The LSTM model, however introduces a new structure called memory cell which helps to bypass the above-

mentioned issue. A memory cell consists of total four elements: an input date, a neuron with self-recurrent

connection, a forget gate and an output gate. The input gate can allow the incoming signal to alter the state

of the memory cell or block it. The self-recurrent connection has a weight of 1.0 and ensures barring any

outside interference, the state of a memory cell can remain constant from one timestep to another. The gates

serve to modulate the interactions between the memory cell itself and its environment. The output gate can

allow the state of the memory cell to have an effect on other neurons or prevent it. Finally, the forget gate

can modulate the memory cell’s self-recurrent connection, allowing the cell to remember or forget its

previous state, as needed. For our neural network model in this paper, we have modeled the neural network

using LSTM networks in MATLAB where the training data was classified by sequentially sending feature

vectors with respective tags into the training network. The first LSTM unit takes the initial network state

and the first-time step of the sequence to make a prediction, and outputs the updated network state to the

next LSTM unit. Each LSTM unit takes the updated network state from the previous unit and outputs a

prediction and a new updated network state. LSTM networks can remember the state of the network

between predictions. The network state is useful for when we do not have the complete time series in

advance, or if we want to make multiple predictions on a long-time series. Figure 4 shows a typical LSTM

network architecture used in neural networks.

Results: First we have trained the kNN classifier using the training dataset to demonstrate a traditional

classification method, k value kept at 75. It is observed that, the error rate for the training dataset in kNN

classifier started increasing with the increase of the number k and eventually settled around 38%, the error

rate for the development data also settled around 47%. The performance data obtained from the classifier

indicates that, the error rate for classifying the training data in closed loop test is 38.60%, the error rate for

classifying the development dataset in open loop test is 47.45%.

Then we have trained our neural network using the training dataset and after the neural network was built

into the machine, we ran another closed loop test. This time the training dataset gave us a 42.92%

classification error. Then the development dataset gave us 39.80% classification error rate in open loop test

All result data are summarized in Table 1.

It can be observed from the results obtained

from both algorithms that the neural network

performed better in open loop test datasets

than the traditional kNN classifier in

classifying seizure events from EEG seizure

corpus.

 Data Set

Algorithm Train Dev Test Eval

kNN (k=75) 38.60% 47.45% 49.57%

Neural Network 42.92% 39.80% 47.70%

Table 1. Error rate for different datasets and algorithms

Figure 3: Evaluation data obtained from TUH EEG Seizure Corpus

Figure 4: Typical LSTM architecture used in neural networks

Figure 1: Training data obtained from TUH EEG

Seizure Corpus

Figure 2: Dev data obtained from TUH EEG

Seizure Corpus

Figures

Figure 5: Error rate vs ‘k’ for Training data and Dev data

Figures

