
EEG data classification using traditional and neural network methods

Jun Chen

Department of Mechanical Engineering, Temple University

tuh39080@temple.edu

Introduction: Electroencephalography (EEG) is an electrophysiological monitoring method to record

electrical activity of the brain. EEG measures voltage fluctuations resulting from ionic current within

the neurons of the brain. In Dr. Picone’s project, they are focusing on clinical electroencephalogram (EEG)

recordings conducted at Temple University Hospital (TUH) from 2002 to 2013 (and beyond). The first

release of the corpus is expected to contain over 20,000 EEGs. This set of data, where the first column is

the class label and the remaining columns are the corresponding feature vector, is now to be classified using

both k-nearest neighbors algorithm (kNN) and Backpropagation (Bp) algorithm. After training these data,

a closed-loop evaluation data set and a open-loop development data set are used to test the accuracy of

classifications. By doing this experiment, we practically implement machine learning algorithm into a real

set of data to verify the principles. At the same time, we are able to briefly compare conventional pattern

classification algorithms with neural network methods during this process and find some interesting

conclusions.

Matlab is used as the environment to conduct the experiment in this report. In order to implement KNN and

Bp algorithms, Statistics and Machine Learning Toolbox and Neural Network Toolbox are used. Statistics

and Machine Learning Toolbox provides functions and apps to describe, analyze, and model data. It

provides supervised and unsupervised machine learning algorithms including k-nearest neighbor. At the

same time, Neural Network Toolbox provides algorithms, pretrained models, and apps to create, train,

visualize, and simulate both shallow and deep neural networks. A feed-forward backpropagation network

can be established using this toolbox, which we can use to implement neural network classification in this

experiment. Also, Matlab is a good visualized tool that enable us to plot our results and watch the real-time

value of each variable, matric or vector.

k-nearest neighbors algorithm (kNN): kNN algorithm is one of the simplest classification algorithms as

well as one of the most common-used learning algorithms. The reason why kNN is chosen is that by using

this kind on nonparametric technique, we do not have to know the underlying distribution of the EEG data

and do not even necessary to make an assumption. In fact, in our case, it’s hard to give an assumption of

how these data are distributed. The principle of kNN is based on feature similarity. For a certain data, we

find k nearest data vectors most commonly by calculating Euclidean distance between them. k is a user-

defined constant. Generally, larger values of k reduce the effect of noise on the classification, but make

boundaries between classes less distinct.

In Matlab, we use Statistics and Machine Learning Toolbox to implement kNN method. The first step is to

make sure that the feature vectors have been normalized in order to be fit. However, the labels are not

necessary to be normalized since they are already in 0 and 1 format in this case. The second step is to train

a kNN classifier using function fitcknn. By using fitcknn, we can difine the number of k and standardize

noncategorical predictor data. The method to calculate distance between data vectors is Euclidean distance

in function fitcknn. After that, the third step is that we use the function predict to acquire predicted class

labels for both open-loop and closed-loop test data using function predict. At last, accuracy is computed to

evaluate the classification.

Backpropagation algorithm (Bp): Backpropagation is a supervised learning technique for training of a

multilayer perceptron (MLP). A multilayer perceptron is a class of feedforward artificial neural network

which consists of at least three layers of nodes. Except for the input nodes, each node is a neuron that uses

a nonlinear activation function. In a neural network we randomly initialize and update the weights to

optimize output using gradient descent. Backpropagation is a way to efficiently obtain the gradients while

https://en.wikipedia.org/wiki/Electrophysiology
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Ion_current
https://en.wikipedia.org/wiki/Neurons
https://en.wikipedia.org/wiki/Brain

trying to minimize the loss function for a neural network. Four steps are being processed in backpropagation

algorithm: 1) Calculate the forward phase; 2) Calculate the backward phase; 3) Combine the individual

gradients; 4) Update the weights.

To implement backpropagation algorithm in Matlab, we use the Neural Network Toolbox. At first, we

define a three-layer network and set numbers of nods for each of these layers. Then we establish the function

between input and output using tangent sigmoid transfer function for both hidden layers, and linear transfer

function for output layer. Function used in this step is newff. After that, we train the data set using function

train in Neural Network Toolbox. Prediction results can be simulated by comparing net structure with

feature character vectors using function sim. At last accuracy is computed to evaluate the classification. It

is worth realizing the importance of setting up a minimum global error for each data to fit the classification

model. This is to avoid overfitting, since it would make no sense when the boundary is trying to be as close

as it can to each data point.

Results: Table 1 concludes the results for both k-nearest neighbors algorithm and Backpropagation

algorithm. To obtain the highest accuracy, the numerical value of k is being adjusted and the results are

compared for each time. The k values for each of the three datasets, training, developing and evaluation, to

achieve the best accuracy are not always the same. However, in backpropagation, we try to set the best

numbers of nodes, as well as the minimum global errors for each of the hidden layer by experience and

experiment. These values turn out to be the same when three data set are all obtaining their highest accuracy.

Here are values of error rates obtained in this experiment. For training data set, kNN gives 26.80% error

rate when k is set to be 5. At the same time, Bp gives 34.59% error rate when numbers of nodes are both

25 for each layer, and the minimum global error is 10E-3. For develop test data set which is open-loop,

kNN gives an error rate of 42.97% when k is 10, while Bp gives 38.76% under the same conditions as

previous. For evaluation data set which is closed-loop, kNN shows an error rate of 47.53% when k is 6,

while Bp shows 46.33% under the same conditions as previous. As we can see, for both open-loop and

closed-loop set of data, Bp performs better than kNN. Neural network method shows a better result in this

experiment.

In the aspect of computational speed, kNN runs much faster than Bp. Bp takes around 100 iterations to

converge in a reasonable sense and to lower the error, we set the number of iterations to be 400.

Conclusions: There are both advantages and drawbacks for k-nearest neighbors algorithm and

Backpropagation algorithm in this case. Bp performs better for both open-loop and closed-loop datasets.

However, we can never simply draw a conclusion that deep learning algorithms are better than conventional

algorithms in every espect. We learn from this experiment that performance of a certain kind of algorithm

depends fairly on the properties of given dataset, and also depends on how we adjust the parameters in a

certain algorithm. In this case, kNN uses concrete Euclidean distance and classify data based on feature

similarity. However, even if we depend our decision so strongly on these measured distances, we can hardly

tell how they can accurately describe the distribution properties of given data set. Bp makes decisions more

obscurely so that the error of some single data will not be influential too much. Yet, we still need to worry

about overfitting problems. Also, there is no perfect rule for one to establish a neural network with perfect

values of layers, nodes, iterations and so on. The only way to obtain best parameters is to adjust them

repeatedly until we get the best results.

In another hand, traditional machine learning algorithms are usually much simpler to implement and run

pretty fast. However, a neural network is built on several layers and multiple nodes. It usually takes a large

number of iterations to finish data training. Thus, it can be much more complicated and computational

complex.

Figure 1. Total accuracy of KNN for training data Figure 2. Total accuracy of KNN for developing data

Figure 3. Total accuracy of KNN for evaluation data Figure 4. Epochs vs MSE

 Data Set

Algorithm Train Dev Test Eval

kNN(k=6) 29.78% 44.48% 47.53%

Bp 34.56% 37.48% 46.33%

Table 1. Best results (error rates) of each data set using kNN and Bp

Figure 5. Total accuracy of Bp for training data Figure 6. Total accuracy of Bp for developing data

Figure 7. Total accuracy of Bp for evaluation data Figure 8. Neural Network tool interface

