
ECE 8527: Exam 3

Andrew Powell

May 2, 2014

1. Problem No. 1: Consider 5 data points: (0, 1), (-1, 0), which belong to class 1 (i.e. ω1),
and (1, 0), (0, -1), and (-12 ,

1
2), which belong to class 2 (i.e. ω2). In this problem we are

going to walk through the k-means clustering process.

(a) Assume your initial guesses for the two cluster centers are (0, 0) and (12 ,
1
2). Execute

an iteration of k-means by computing the new cluster and assigning the data points
to the correct cluster. Use averaging to computer the new cluster center.

i. Theoretical Solution: k is equal to 2 since there are two clusters. To distinguish
the clusters, the clusters are referred to as ωa and ωb. The initial center coordinates
of the two clusters are the following.

Cωa = {(0, 0)}
Cωb

= {(0.5, 0.5)}
(1)

The letters a and b in the clusters ωa and ωb are used to reflect the fact the class
identities of the clusters are unknown; that is, it is unknown how the true classes
(i.e. ω1 and ω2) uniquely correspond to the clusters. Cωa and Cωb

each refer to
a set of center coordinates. Cωa(t) and Cωb

(t), where t is a nonnegative integer,
will refer to a particular coordinate in the set. For instance, Cωa(0) refers to
{(0, 0)}.

In order to calculate the new center coordinates, the 2-dimensional Euclidean
distances between each point and the center coordinates are calculated. Points
are assigned to each cluster by selecting the cluster whose center coordinate’s
distance to the points is the smallest.

To help summarize the results, the following notation is also used. All the points
are placed into a set P ; that is, P = {(0, 1), (−1, 0), (1, 0), (0,−1), (−0.5, 0.5)}.
P (n), where n is a nonnegative integer, will refer to a particular point within
the set P . The function d(−→v1 ,−→v2) is the 2-dimensional Euclidean distance for the
arguments −→v1 and −→v2 , both of which represent coordinates. Each point is assigned
to ωa if d(Cωa(0), P (n)) ≤ d(Cωb

(0), P (n)) is true, otherwise ωb is assigned.
Below is a table that summarizes the cluster assignments for the iteration of the
k-means algorithm. The results of the table are generated from the MATLAB©

script presented in the next section.

n P (n) d(Cωa(0), P (n)) d(Cωb
(0), P (n)) Assigned Cluster

0 (0, 1) 1 0.7071 ωb

1 (−1, 0) 1 1.5811 ωa

2 (1, 0) 1 0.7071 ωb

3 (0,−1) 1 1.5811 ωa

4 (−0.5, 0.5) 0.7071 1 ωa

 (2)

1

ECE 8527: Introduction to Machine Learning Exam 3 2

Finally, the sets Cωa and Cωb
—each of which are the center coordinates that

correspond to the clusters ωa and ωb, respectively—are each updated based on
the mean of the assigned points. For instance, the x element of the new center
coordinate for ωa is simply the mean of all the x elements from points assigned
to ωa. The same calculation is applied to the center coordinate’s y coordinate
and for both x and y elements of ωb’s new center coordinate.

Cωa = {(0, 0), (−0.5,−0.1667)}
Cωb

= {(0.5, 0.5), (0.5, 0.5)}
(3)

ii. MATLAB© Script:

1 P = [0 -1 1 0 -.5
1 0 0 -1 .5];

3 C_omega_a = [0; 0];
C_omega_b = [.5; .5];

5

iterations = 1;
7

for i=1:iterations
9

% determine the Euclidean distances
11 D = dist([P C_omega_a(:,end) C_omega_b(:,end)]);

D = D(1:(end-2),(end-1):end); % D refers to the distances
13

% determine the cluster assignments
15 cA = D(:,1) <= D(:,2); % cA refers to cluster assignments

cA = char(uint8(cA));
17 cA(cA==1) = 'a'

cA(cA==0) = 'b'
19

% determine new cluster centers based on the cluster assignments
21 C_omega_a(:,end+1) = [mean(P(1,cA=='a'),2); mean(P(2,cA=='a'),2)];

C_omega_b(:,end+1) = [mean(P(1,cA=='b'),2); mean(P(2,cA=='b'),2)];
23

end
25

Listing 1: MATLAB© Script

As shown in the script, the algorithm can be set to run for however many
iterations. As it turns out, though, only a single iteration is necessary to obtain
converged results.

(b) Assign an identity to each cluster based on a majority-voting scheme and draw the
maximum likelihood decision surface.

The class identities of ωa and ωb are determined by selecting the class that has the
most number of points from the set of the k points. The set of k points are the k
closest points to the center coordinate whose cluster is the cluster to which a class
is being assigned. The center coordinates used to obtain the sets of k points are
the newly created center coordinates as shown in Equation 3, which are Cωa(1) and
Cωb

(1). The table below is an updated version of the table shown in Equation 2. The
distances are updated based on the new center coordinates, Cωa(1) and Cωb

(1). The

ECE 8527: Introduction to Machine Learning Exam 3 3

class identities, ω1 and ω2, are also included for each point.

n P (n) d(Cωa(1), P (n)) d(Cωb
(1), P (n)) Assigned Cluster True Class

0 (0, 1) 1.2693 0.7071 ωb ω1

1 (−1, 0) 0.5270 1.5811 ωa ω1

2 (1, 0) 1.5092 0.7071 ωb ω2

3 (0,−1) 0.9718 1.5811 ωa ω2

4 (−0.5, 0.5) 0.6667 1 ωa ω2


(4)

The table below shows the sets of k-closest points to the center coordinates, where
k = 3, and the class winners of the majority vote. Center Coordinate Set of k-closest Points

Where k = 3 Winner
Cωa(1) {P (1), P (4), P (2)} ω2

Cωb
(1) {P (0), P (2), P (4)} ω2

 (5)

As it turns out, the winner for both center coordinates is ω2. Other values of k,
all values from the set {1, 3, 5}, were chosen. However, for every value of k from
the aforementioned set, the class winners for both clusters always result in ω2. The
possible even values of k always result in ties.

Below is a plot of the decision line and the points from P , Cωa , and Cωb
.

Figure 1: Feature Plot and Decision Line

Considering both clusters are assigned to ω2, the decision line seems rather pointless.

(c) Consider two test data points: (-34 ,
3
4), which belongs to ω1, and (12 ,

1
2), which belongs

to ω2. Compute the probability of error based on your k-means clustering.

Seeing as the classifier created from the k-mean clustering algorithm always assigns
each new point to ω2, the probability of error P (e) is simply the probability of
getting a point belonging to ω1, which is the prior P (ω1). Based on the prior
information—including the new points mentioned in (c)—the total number of points

ECE 8527: Introduction to Machine Learning Exam 3 4

for ω1 and ω2 are 3 and 4, respectively. Thus, it is known from prior information 3
out of 7 points are classified as ω1, making P (ω1) =

3
7 ≈ 0.4286. Since P (e) = P (ω1),

P (e) ≈ 0.4286.

I heard from a few students that the prior was already specified as .5. If this is
indeed the case, P (e) = .5

(d) Compute the probability of error based on a k-nearest neighbor rule. How different
should this result be from (c) for large k?

The error rate P (e) determined from (c) is also Bayesian error rate P ∗, considering
P ∗ = min(P (ω1|−→x), P (ω2|−→x)) = P (e) = P (ω1). If k is always a positive and odd
integer, then the probability of error for the k-nearest neighbor rule with only two
possible classes is bounded by the following equation.

Pbound(e) =

(k−1)/2∑
i=0

(
k

i

)[
(P ∗)i+1(1− P ∗)k−i + (P ∗)k−i(1− P ∗)i+1

]
(6)

Pbound(e) is interpreted as the actual probability of error for the k-nearest neighbor
rule, seeing as the bound states the error cannot be any worse (and I would like to
finish this rework exam within the available amount of time).

If the P (e) is in fact .5, Pbound only results in 0.5, seemingly for all nonnegative,
odd values of k—which is obvious since it’s impossible to get an error greater than
0.5.

However, the following table is generated if P ∗ ≈ 0.4286, as determined in (b). As k
tends to infinity, Pbound appears to tend to P ∗, the “ideal” error.

k Pbound, where P ∗ ≈ 0.4286
1 0.4898
3 0.4848
5 0.4811
7 0.4781
9 0.4756
11 0.4733
13 0.4713
...


(7)

In retrospect, I realize a line plot probably would have worked better, here.

2. Problem No. 2: Consider the same 5 data points above.

(a) Construct a dendrogram for the data.

The dendrogram presented as the answer to Problem No. 2 is created with the
Agglomerative Hierarchical Clustering (AHC) algorithm. The algorithm is implemented
as follows.

Every unlabeled point P (n) from the set P = {(0, 1), (−1, 0), (1, 0), (0,−1), (−0.5, 0.5)}
is first labeled as its own cluster. Let’s call this set of cluster centers C. Initially, C
is set equal to P . In every iteration of the AHC algorithm, the center coordinates
in C are merged together based on the two center coordinates closest to each other.
The algorithm finally finishes once there is only a single center coordinate remaining
in C.

ECE 8527: Introduction to Machine Learning Exam 3 5

i. Theoretical Solution:

Figure 2: Dendrogram created from the AHC algorithm

The dendrogram in Figure 2 starts from the top and then proceeds downward for
each iteration. P (n) refers to each point in P = {(0, 1), (−1, 0), (1, 0), (0,−1), (−0.5, 0.5)}.
The values shown above each new cluster in the dendrogram are the minimum
distances determined from each iteration of the AHC algorithm. The minimum
distances are also selected as the similarity values for the dendrogram. The
similarity values are used in (c) for establishing what the “unsupervised” clusters
should be.

ii. MATLAB© Script: Listing 2 shows the MATLAB© script that implements
the AHC algorithm.

% initial the cluster set with P
2 C = P;

4 % Cset is a set of structures
createCset = @(C, minD)struct('C', C, 'minD', minD);

6 Cset = createCset(C, Inf);

8 % this algorithm must be run until there is only one cluster left
while numel(C(1,:)) ~= 1

10

% find the vector(s) the smallest distance
12 l = numel(C(1,:));

D = dist(C) + tril(Inf*ones(l),0);
14 [columnD, indicesD] = columnize(D);

[minD, i] = min(columnD);
16 equalSizedV = indicesD(i,:);

18 % determine the cluster centers that make up those vectors
newC = unique(reshape(equalSizedV, ...

20 numel(equalSizedV),1));

22 % combine the cluster centers to form a new cluster
newCc = [mean(C(1,newC)) ; mean(C(2,newC))];

ECE 8527: Introduction to Machine Learning Exam 3 6

24

% replace cluster centers with the combined cluster center
26 C(:,newC) = [];

C(:,end+1) = newCc;
28

% add data to structure
30 Cset(end+1) = createCset(C, minD);

end
32

Listing 2: MATLAB© Script

The results of the script are organized in the table shown in Equation 8 (and from
the table, the dendrogram in Figure 2 is constructed). i refers to each iteration
of the algorithm.

i C Minimum Distance
1 {(0, 1), (−1, 0), (1, 0), (0,−1), (−0.5, 0.5)} N/A
2 {(−1, 0), (1, 0), (0,−1), (−0.25, 0.75)} 0.7071
3 {(1, 0), (0,−1), (−0.625, 0.375)} 1.067
4 {(−0.625, 0.375), (0.5,−0.5)} 1.4142
5 {(−0.625,−0.625)} 1.4252

 (8)

(b) construct a top-down clustering (e.g., LBG) clustering (you can also think of this as
a crude decision tree).

As suggested, the top-down clustering is done through a variation of the Linde-Buzo-Gray
(LBG) algorithm. Similar to creating a dendrogram with the AHC algorithm, the
LBG algorithm produces a set of clusters for each iteration of the algorithm. The
difference of course is the LBG algorithm initializes with a single cluster in its cluster
set C. For every iteration, clusters associated with at least with two points are divided
into two clusters.

The following explains how each cluster is divided. The center coordinate of the
cluster is first separated into two center points. Let’s say C(n), where n is simply
a nonnegative integer used to refer to a particular cluster in the set C, is the center
coordinate of interest. C1(n) and C2(n) refer to the two center points created from
C(n). The following equation demonstrates how C1(n) and C2(n) are determined.

C1(n) = C(n)× (1 + ε)

C2(n) = C(n)× (1− ε)
(9)

The set of points associated with the cluster C(n) are distributed between C1(n) and
C2(n) through the k-means algorithm. C1(n) and C2(n) are also updated as part of
the k-means algorithm and then replace C(n) in the set of clusters C.

It is worth mentioning there is an issue wherein a cluster C(n) with two or more points
is not properly distributed with the k-means algorithm and either C1(n) or C2(n) is
assigned all the points of C(n). In order to overcome the issue, the LBG algorithm
is implemented such that one of the points associated with C(n) is automatically
assigned to the cluster with zero assigned points.

i. Theoretical Solution: The tree shown in Figure 3 is created from the MATLAB©

script that implements the LGB algorithm. It is important to note the tree starts
from the top and then travels downward for each iteration.

ECE 8527: Introduction to Machine Learning Exam 3 7

Figure 3: Top-Down Clustering Tree created from the LGB algorithm

The table shown below contains the center points of each cluster in C and for
each iteration. 

i C
1 {(−0.1, 0.1)}
2 {(−0.5, 0.5), (0.5,−0.5)}
3 {(−0.5, 0.5), (−0.5, 0.5), (1, 0), (0,−1)}
4 {(0, 1), (−1, 0), (−0.5, 0.5), (1, 0), (0,−1)}

 (10)

ii. MATLAB© Script:

1 Pcolumns = numel(P(1,:));

3 % initialize set of cluster centers as a single cluster
createCstruct = @(points)struct('P', points, 'c', mean(points,2));

5 Cstructs = createCstruct(P);

7 % needed for the separation of the data
epsilon = .3;

9

% keep iterating the algorithm until the number of cluster centers
11 % equal that of the original set of points

while numel(Cstructs) ~= Pcolumns
13 newCstructs = {};

for n=1:numel(Cstructs)
15 if numel(Cstructs(n).P(1,:)) > 1

Cdivide = [Cstructs(n).c*(1+epsilon) ...
17 Cstructs(n).c*(1-epsilon)];

D = dist([Cstructs(n).P Cdivide]);
19 D = D(1:(end-2),(end-1):end);

decider = D(:,1) <= D(:,2);
21 if sum(decider) == numel(decider)

decider(end) = 0;
23 end

newCstructs{end+1} = ...
25 [createCstruct(Cstructs(n).P(:, decider==1)) ...

createCstruct(Cstructs(n).P(:, decider==0))];
27 else

newCstructs{end+1} = Cstructs(n);
29 end

end
31 Cstructs = [newCstructs{:}];

ECE 8527: Introduction to Machine Learning Exam 3 8

end
33

Listing 3: MATLAB© Script

(c) If you were to use your dendrogram to do unsupervised clustering of the data, what
clusters would you create (specify them by the mean and the elements associated
with the cluster).

Based on the result determined in (a), the clusters C would include the cluster
C(0) = (−0.625, 0.375) whose associated points are PC(0) = {P (0), P (4), P (1)} =
{(0, 1), (−0.5, 0.5), (−1, 0)}, and the cluster C(1) = (0.5,−0.5) whose associated
points are PC(1) = {P (2), P (3)} = {(−1, 0), (1, 0)}.

The reason for selecting the clusters C is specifically due to the results shown in the
dendrogram presented in Figure 2 and the table shown in Equation 8. The similarity
value changes from 1.0607 to 1.4142 on iterations i 3 to 4, respectively. The difference
between the two similarity values is larger than the difference calculated from any
other pair of similarity values from adjacent iterations.

This observation is significant because a larger change in distance between clusters
indicates the clusters being merged are relatively far from each other. Thus, it is
assumed the iteration prior to the largest change in distance—that is, the largest
change in similarity value—contains the most “reasonable” set of clusters in terms of
the distance between the points.

Tried my best to explain my reasoning, Dr. Picone.

(d) Suppose (0, 1) and (1, 0) occur 5 times more often than the rest of the data points.
How would you adjust your strategy for clustering the data? How would that impact
your decision regions?

The strategy for improving the initial guesses of the clusters’ center coordinates with
k-means would stay the same; however, the strategy for determining the number of
clusters and the initial guesses of each cluster would need modification.

ECE 8527: Introduction to Machine Learning Exam 3 9

Figure 4: Altered Feature Plot and Decision Line

The MATLAB© scripts shown in (1a) and (2a) are altered such that the points
P (0) = (0, 1) and P (2) = (1, 0) occur 5 times more often and are assigned the same
classes. The resultant decision line is shown in Figure 4. The decision line seems to
look exactly like the decision line created from the original set of points (see Figure 1).

What changes, however, are the class assignments, depending on the value of k.

k ωa Assigned Class ωb Assigned Class
1 ω1 ω1

3 ω2 ω1

5, 7, 9 ω1 ω1

11 ω1 ω2

13 ω2 ω2

 (11)

Running the AHC algorithm generates results similar to the table shown in Equation
8. However, the AHC algorithm takes the first several iterations to combine the
repetitive points. The first several iterations all have similarity values of 0 since the
repetitive points have no distance between each other. The next highest similarity
value is 0.7071, and the iteration previous to getting the next highest similarity value
is the same iteration whose clusters are equivalent to the original set of points P .

With the aforementioned thoughts in mind, it might be a good idea to somehow
“scatter the redundant data” (or keep drawing more points so that the set of points
becomes very large and more dense). Scattering in this context implies shift the
redundant points such that they are not overlapping each other, but keep them close
enough that the data doesn’t become “too distorted”. The fact that so many of the
same data points may very well be important information, suggesting there may be
a peak in the data’s underlining model.

