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Exercise 1. Consider two probability distributions defined by

p(x|ω1) =

{
1, 0 ≤ x ≤ 1

0, elsewhere

p(x|ω2) =

{
1, 1

2
≤ x ≤ 3

2

0, elsewhere

and assume equal priors.
(a) Draw two points at random from each class. Design a nearest-neighbor classifier based on

these points. Compute the probability of error.
(b) Exmplain what happens as you allow the number of points drawn to increase. Show that

your result in (a) converges to the correct result.

Solution for (a):
We arbitrarily choose the following points

p(x|ω1) 3

{
x11 = 0.5

x12 = 0.4

p(x|ω2) 3

{
x21 = 0.6

x22 = 1.4
.

Let x be an unclassified data point. A nearest neighbor classifier centers a cell at x and looks
for the nearest neighbor. Based on the above 4 data points, any point x < 0.55 will be classified
in ω1 and any x > 0.55 will be classified in ω2. This is equivalent to having a decision boundary
at 0.55 and gives us the following:

P (error) =
∫ 1

0.55

p(x|ω1)P (ω1)dx+

∫ 0.55

0.5

p(x|ω2)P (ω2)dx = P (ω1)0.5 = 0.25.

We simulate the above, by generating N data points, half of which are from p(x|ω2) while
the other half are from p(x|ω2) (since we have equal priors). We classify each point as follows:
any point x < 0.55 will be classified in ω1 and any x > 0.55 will be classified in ω2. We let
N ∈ {10, 100, 1000, 10000, 100000}, and calculate the probability of error as

P (error) =
number of incorrect classifications

N
.

Table 1 shows the results of our simulation. From this, we see that as N grows, P (error)
approaches 0.25.



Table 1: Probability of Error for Nearest Neighbor Classifier with 4 Original Data Points

N P(error)
10 0.1000

100 0.2400
1000 0.2270

10000 0.2538
100000 0.2510

Solution for (b):
Note that from the problem statement, we are assuming equal priors and also, we are dealing

with uniform distributions. Thus, we are equally likely to encounter a data point at any point in
the intervals defined by the distributions.

As the number of data points n→∞ you will be equally likely to be closed to a point from
either p(x|ω1) and p(x|ω2) on the interval [1

2
, 1]. This is equivalent to having a decision surface

which is equi-distant from the means of the two distributions, which in this case is 3
4
. From this,

we have the probability of error is

P (error) =
∫ 1

0.75

p(x|ω1)P (ω1)dx+

∫ 0.75

0.5

p(x|ω2)P (ω2)dx = P (ω1)0.5 = 0.25.

We simulate the above situation. To do this, we generate ND data points to use as our classifier,
half from each distribution above. For each choice of ND we choose NC points to classify (again,
half drawn from each distribution above). We find the minimum distance between each of the
NC points and the ND points and classify the NC point as coming from the same class as the ND

point corresponding to this minimum distance. We consider ND, NC ∈ {10, 100, 1000, 10000}
and for simplicity constrain ND = NC . The results of our simulation are shown in Table 2.

Table 2: Probability of Error for Nearest Neighbor Classifier with ND Original Data Points

NC P(error)
10 0.3000

100 0.2600
1000 0.2600

10000 0.2483



Exercise 2. Consider the following models for a system that outputs a sequence of characters
”$” and ”%”.
(a) Compute the probability that model A produced the sequence ”%$%”.
(b) Which model most likely produced the sequence ”%$%”. Explain.
(c) Which state sequence most likely produced the sequence ”%$%”. hat was the probability

of that state sequence.
(d) Give at least two reasons why the probabilities in (a) and (c) differ.

Solution for (a):
Figs. 1 and 2 show the results of our calculation. We get that the probability that model A

produced ”%$%” is equal to

PA = α3(4) = 0.75
(
0.25a11

)(
0.75a12

)
+ 0.75

(
0.25a12

)(
0.75a22

)
= 0.140625

(
a11a12 + a12a22

)
,

(1)
while the probability that model B produced ”%$%” is

PB = β3(4) = 0.25
(
0.75b11

)(
0.25b11

)
+ 0.25

(
0.75b12

)(
0.25b11

)
= 0.046875

(
b11b12 + b12b22

)
.

(2)
Solution for (b):
From the above, and assuming both models have the same transition probabilities, we see that

model A will most likely produce the sequence ”%$%” since

b11b12 + b12b22 = a11a12 + a12a22

and therefore PA > PB. This follows intuitively, since we have more ”%” than ”$” and the
probability that we see a ”%” is higher for model A than model B.

If we do not assume that both models have equal state transition probabilities then model A
will most likely produce the sequence if

a11a12 + a12a22 >
0.046875

0.140625
b11b12 + b12b22

and model B will most likely produce the sequence otherwise.

Solution for (c):
We note that we have two possible state sequences through either model:

ω0ω1ω1ω2ω3

ω0ω1ω2ω2ω3.

From this, we see that our path is uniquely determined from our second state transition. We also
note that the optimal path through will also be the locally optimal path. Thus, we only need
consider α1(2), α2(2) and β1(2), β2(2). Since a12 = 1− a11 and b12 = 1− b11, we have that

α1(2) ≥ α2(2) if a11 ≥ 0.5

β1(2) ≥ β2(2) if b11 ≥ 0.5.

It follows that the optimal path through model A and model B, respectively, is

ω0ω1ωjω2ω3, j = argmax
k
{a1k}



Figure 1: Model A



Figure 2: Model B



ω0ω1ωiω2ω3, i = argmax
k
{b1k}.

The probability of each of these state sequences, for model A and B respectively, is

0.75
(
0.25a1j

)(
0.75aj2

)
, j = argmax

k
{a1k} (3)

0.25
(
0.75b1i

)(
0.25bi2

)
, i = argmax

k
{b1k}. (4)

If we consider both models then the most likely state sequence is the state sequence corresponding
to the maximum of (3) and (4).

Solution for (d):
The probability in (a) considers all possible state sequences while the probability in (c)

considers each state sequence from each model separately. Thus, one could have a model with
very high probability of a single state sequence producing the output, while the other model could
have a higher probability that the sum of ALL state sequences produce the given output. These
probabilities are determined by both the output probabilities and the state transition probabilities.


