
Exam 1 – Reworked 

ONE – 

Given the following probability distributions present a sketch of the error P(E) for a maximum 
likelihood classifier as a function of α and P(ω1). 

 

p(x| ω1) = 1 while α – ½ ≤ x ≤ α +1/2, 0 otherwise 

p(x| ω2) = 1 while -1/2 ≤ x ≤ ½, 0 otherwise 

The error of the functions can be found by shifting the one with variable α along the x axis 
and multiplying by the value of the static function. In essence, if the functions are convolved the 
resultant area will indicate the region and strength of the errors. It should be noted that there can be 
no error until the functions overlap and then when they fully overlap each other the error should 
peak. The maximum error seen should be 50%, verified from the equation below: 

P(E) = ½ *  ∫ p(x|ω2)p(x| ω1) dx ; over the range -½  +α to α+½ window   

This results in zero error where the two functions do not overlap, and produces error only 
once they have being to overlap. Two squares convolved together should result in a triangle, and this 
is what is found from the P(E) plot. 

 



 

If the distributions were instead Gaussians, how would this later the probability of error? 

Building two Gaussian functions to mimic the uniform density functions requires a sigma of 
1/6 to ensure 99% of the function falls in an area of 1 on the x axis. Again, the error rate does not 
exceed 50% and can be found using the same equation as before, but with Gaussian distributions 
that have a sigma of 1/6. 

 

 

  



TWO - 

Given the following uniform density function: p(x|Θ) = 1/Θ when 0≤ x ≤ Θ and 0 otherwise. If n 
samples are drawn to create a set of Dn = { x1, x2,…,xn } what is the expression for the likelihood 
estimate of Θ. That is, what is the probability of Θ given various sample sizes of data and what 
happens to this as n beings to approach infinity? 

Pulling from Bayesian conditional probability, the likelihood of the data given Θ can be 
expressed in the following manner: 

p( Dn | Θ ) = p( Θ | Dn )p( Dn ) / p( Θ ) 

This equation is troublesome in that we are not presented with any of the required 
probabilities to solve for the likelihood of the data given Θ. If the data set was small, the solution 
would be to find the probability of each data point in the data set and build it into the numerator. 
While not practical, it shows that our true goal is the total likelihood of all of the variables chosen 
with Dn. This is an equation we can produce and looks like the following: 

p( Dn | Θ ) = Π p( xk | Θ ) over the range of k=1 to n 

p( Dn | Θ ) = [ 1/Θ ]n where 0 ≤ x ≤ Θ 

 

For a given set of 5 random values of theta the results look like this when the maximum random 
value selected is nine. This also results in the limits on the function changing to enable a step 
response only when the min of xk to be greater than or equal to 0 and the max of xk to be greater 
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than or equal to Θ. This only allows the function to exist for values greater than 0, where the 
function will be zero, until Θ equals the max of xk after which the function will trail off in terms of 
1/Θn. This is seen in the above plot. 

The derivative of the function becomes –n * (1/Θ)(n+1) and results in a function that returns one 
once the ideal value of theta has been reached. 

 

 

It can be seen that as n increases the likelihood of the function approaches very small values of 
probability as Θ grows. For small values of n and small values of Θ the likelihood is spread further 
out as each additional selection for Dn increments Θ and thus reduces the likelihood of all possible 
outcomes. This manifests once the value of Θ is exceeded as the function only returns values 
starting at Θ equals max xk. 
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THREE – 

A zero-mean unit variance discrete-time Gaussian white noise single, x[n], is applied to a digital 
filter: H(z) = 1 / 1( 1 – αz-1 ). Assume you only have access to the output of this filter, but you do 
know the form of the filter (you just don’t have the specific value of α), and you can assume the 
input is a zero-mean Gaussian white noise. Derive or explain how you would construct a maximum 
likelihood estimate of the filter coefficient. Hint: think about the pdf for the difference of two 
random variables. Second hint: think about the role correlation can play in this estimate. 

 

For a given α value the input, output and first few terms of autocorrelation should look like the 
following plots. 

 

As stated in the problem, access to the initial signal, x[n], is not given so the only data that can be 
worked with is the output data. When given the transfer function of the system, the equation for the 
output can be used to find the minimum error between input and output. Starting with the following 
equation: 

Σ x[n] = Σ ( y[n] + αy[n-1] ) 

Where the idea is to minimize the difference between the left and right hand sides of the equation. 
Using a least squares regression approach it will be found that: 

Σ e2[n] = Σ ( y[n] – x[n] – αy[n-1] )2 

 Σ e2[n] = Σ  ( y2[n] + 2αx[n]y[n-1] + α2y2[n-1] ) 

Differentiating with respect to alpha and setting the result equal to zero to find the inflection of the 
resultant curve allows one to solve for α. 



 0 = Σ ( 2*x[n]y[n-1] + 2αy2[n-1] ) 

Isolating α produces a division of the two summations, which will resemble terms from the 
autocorrelation equations. Where R(k) is the result of the autocorrelation function for various 
intervals of k. Given that the input is a zero mean Gaussian, Σ x[n] is concluded to be one, just like 
Σy[n] would be which allows one to replace the numerator with the autocorrelation value of R(1). 

-α = Σ ( x[n]y[n-1] ) / Σ ( y[n-1]y[n-1] ) 

-α = R(1) / R(0) 

This result should be mirrored when applying Maximum Likelihood Estimation to the coefficient of 
alpha. Based out of the difference equation y[n] = αy[n-1] + x[n] and knowing that the regression 
equation to find the output in terms of the previous value is y[n] = ß0 + ß1y[n-1]. The goal should be 
to find that the beta terms result in those present in the different equation. 

The initial step is to work out what the Gaussian distribution of y[n] would be so the regression 
equation can be solved for partial derivatives of the betas and sigma. 

Yi = N(ß0+ß1Yi-1,σ2) 

Pdf of Yi ->  fi = 1 / ( sqrt(2*pi)*σ ) * exp( -½ * ( ( Yi – ß0 – ß1Yi-1)/σ )2 ) 

The two equations above provide us with a way to generate a distribution for each point of the 
output as if they were an unique normal distribution. This works because the input is known to be a 
Gaussian normal distribution with zero mean and unit variance. This equation provides the 
likelihood of the current value, but ideally the log of this equation should be taken to make for easier 
partial derivatives of the unknown terms. 

log(L) = -n/2log((2*pi) -n/2log(σ2) -1/(2 σ2) Σ(Yi – ß0 – ß1Yi-1)2 

The partial derivatives with respect to ß0, ß1, and σ when set to 0 for maximization result in the 
following three equations. 

ΣYi = nß0 + ß1 ΣYi-1 

ΣYiYi-1 = ß0 ΣYi + ß1 Σ(Yi-1)2 

n/ σ2 = 1/ σ4 Σ(Yi – ß0 – ß1Yi-1)2 

Solving for the ß0 and ß1 result in terms that are identical to those found with the Bayesian approach 
earlier in the problem. 

ß1 = R(1)/R(0) 

ß0 = x[n] 


