Exam 1

Cedric Destin

May 10, 2014

1 Problem 1

1.1 a

In this problem we are given two probability distributions denoted as P (X |w1)
and P(X|ws), both distributions are uniform over a certain range, however only
P(X|wsz) has a fixed location, in other words P(X|w;) is not fully known to
us. This could mean that we are receiving data from two classes, where one we
know its mean and the other has an unknown mean. In this situation, we find
the probability of error for every location P(X |w;) can have its mean located.

l:a—05<=2z<=a+0.5
0 : elsewhere

P(xf) = { 1)

1:-05<=2<=05
P(X|w2) = { 0 : elsewhere

P(error,ws) = ; P(X|wy) - P(wy)dz (3)

The probability of error p(error) is also dependent on the classes’ prior P(w1)
and P(ws2) and of course the variable alpha shown in Eq 3. To find this
probability of error, « is varied and the probability of error is computed as:

The probability of error for a varying alpha is computed similar to the con-
volutional integral, the arrow (sorry I know it is small) shows the shift done to
the second distribution resulting the probability of error for a varying value of
«. Finally, the prior probabilities are also varied as illustrated in Figure 3.

1.2 Part b

Part b of the problem examines the probability of error for two Gaussian
instead of the uniform distributions. This case clearly different, and alpha will
now be represented as the mean of the distribution. Hence, P(X|w;) will have
a fix variance, but its mean will vary. The probability of error will then be
calculated as the convolutional integral again. The results for such case are
illustrated in Figure 4.
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Figure 1: Probability distribution for class waandws (R1 and R2)

2 Problem 2

In this problem, an expression for the maximum likelihood estimate is derived
for a uniform density denoted as p(z|#). The approach to the derivation is listed
in the equation in Eq 5 where pz|6 is defined as:

1
—0<z<

P(xlo)={ g 0=*=? (4)
0 : elsewhere

Since P(D|0) is the likelihood of 6 for a given set of data points, the maximum
likelihood will be the value that maximizes the P(D|6).

In Eq 5 P(D|0) is exponentially decreasing as the number of points are
created or drawn, therefore the maximum value has to be when n = 0. The way
that I am interpreting this, is if we have a uniform distribution, the most likely

to occur at the end of that distribution.
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Figure 2: Probability of error as a function of « and with differ P(w)
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Figure 3: Gaussian distribution for

class weandws (R1 and R2)
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Figure 4: Probability of error as a function of o and with differ P(w), for two
Gaussian

3 Problem 3

3.1 Analysis

In Problem 3, the value of a filter a coefficient is estimated. The input to
the filter is a White Gaussian Noise, the assumption in the problem is that the
output of the filter is also a Gaussian signal, therefore, this problem can be
solved using a MLE. The filter’s Z-transfer function is described in Eq 6, from
the Z-transfer function can be obtained the difference equation which is shown
in Eq 7.

1
fp— ©)
yln] = aln] + -yl — 1 ™)

An estimate of the filter coefficient can be obtained the the Mean Square
Error (MSE) which can be derived through the following steps.

MSE(y[n], ay[n — 1]) =

n

= n|+ayn—1
Zl{y[] yln — 1]} ®

=S b+ a1+ Bl 1)
k=1



To solve for o we take derivative of the MSE is set it equal to zero resulting
in the following;:

OMSE
Oa
Hence, (9)
= ylnlyln — 1]
> k=1 yln = yln — 1]

(07

This MSE shows that a can be found only using the outputs. On the other
hand, if we carry our assumption of the data being Gaussian, we may proceed
as follow:

y[n] ~ N(p,0°)

~

Noros . eivp<_y[7;](7; N)z (10)

The expression for pu can be replaced by u = E(y[n]) = E(—ayln — 1)),
therefore y[n| can be shown as follow:

1 —y[n] + ayln — 1))\
yln] ~ V2mo? ~exp< 202 ) ()

To simply it the natural logarithm is taken and similarly, the derivative is
calculated and set to zero to find that the filter coefficient equals to:

o = —

ke YInlyln — 1]
> h—1 yln —1y[n — 1] (12)
3.2 Simulation

The estimator can be simulated in Matlab creating a Gaussian variable and
filtering through filter in Eq 7. This is shown in Figure 5, where a = 0.5
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Figure 5: Gaussian variable x[n] and the filter’s out put y[n-1] and y|n]



Using the implementation Eq 12, the filter coefficient is calculated to be 0.5202
for 200 data points.



