A Performance Comparison of Communication APIs
on Solaris and Windows Operating Systems

Sherali Zeadally and Jia Lu
High-Speed Networking Laboratory
Department of Computer Science
Wayne State University
Detroit, Michigan 48202

Abstract

Communication Application Programming Interfaces
(APIs) constitute an important component of many
network-based applications. They play a central role
in the end-to-end performance ultimately delivered by
networked applications. Most network architectures
exploit the underlying networking APIs in their de-
signs. In this paper, we conduct an empiricial per-
formance evaluation on the PC platform of some of
the most popular networking APIs which include:
Winsock/BSD, Java, and RMI. To explore the im-
pact of the underlying operating system and Java
Virtual Machine (JVM) architecture, we conducted
performance tests on two operating systems namely,
Windows NT 4.0 and Solaris 8. We found that on
both operating system platforms, Winsock and BSD
sockets yield about 1.8 times better throughput than
Java sockets, and Java sockets in turn yield twice the
throughput of that obtained using Remote Method
Invocation (RMI). We also obtained about 1.3 times
higher latency overheads with Java compared to either
Winsock or BSD as well as with RMI when compared
to Java sockets on both Windows NT and Solaris oper-
ating systems. We hope that our results will be useful
to application designers and developers in better op-
timimizing end-to-end application performance.

1 Introduction

One of the ultimate goals of designers and developers
of network systems and applications is the delivery of
optimal end-to-end performance to end-users. Ome
of the components that plays a central role in the
end-to-end performance delivered to end-user applica-
tions is the performance of communication APIs used
in their deployment. Popular communication APIs

used on both Windows and UNIX operating systems
include: Winsock (on Windows Systems) (8], BSD
sockets (UNIX platforms) [6], Java [11], and RMI [9].

BSD sockets are a generalized networking interface
introduced in 4.1c BSD. The sockets feature is
available with most current UNIX system releases.
Sockets allow communication between two different
processes on the same or different machines. WinSock
was developed based on BSD sockets. Both of them
follow the procedure paradigm. Windows Sockets
(WinSock) is the network programming interface for
Microsoft Windows. The WinSock 2 architecture
allows for simultaneous support of multiple protocol
stacks, interfaces, and service providers as well as
new protocols such as Internet Protocol version 6
(IPv6). With the emergence of increasingly complex
distributed computations and applications, Java
emerged to provide a clean and type safe object
oriented programming model. Java technology, de-
veloped by Sun Microsystems, is an object-oriented,
platform-independent, multithreaded, programming
environment. The Java socket API provides a sim-
plified interface to native sockets such as BSD and
Winsock 2. It hides much of the details involved in
traditional socket programming [3, 7]. Java RMI is
a Java based approach for distributed objects. Java
RMI provides a simple mechanism for making method
invocations on Java objects residing in different
virtual machines. Java RMI hides the low level com-
munication issues from the programmer, allowing the
programmer to focus on the distributed algorithmic
aspects. Objects can be transported across networks
via RMI and an object can invoke the methods of an-
other object in a different virtual machine via RMI, in
the same way as methods on local objects are invoked.

This work presents a performance comparison of these

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC’03)
0-7695-1916-4/03 $17.00 © 2003 IEEE

| Remote Method Invocation (RMI) l

Java Sockets

Java Virtual Machine (JVM)
Native Sockets (BSD or Winsock)

Figure 1: Communication APIs and their dependence
on each other.

communication APIs on two popular operating sys-
tem platforms and we hope the results will provide
insight to designers and application developers as to
the overheads inherent when using these APIs in their
applications and as a result save time in the search for
performance optimizations of their applications. The
rest of the paper is structured as follows. In the fol-
lowing section, we present the main contributions and
benefits of this work. In section 3, we describe the
measurement procedures and tests performed. Sec-
tion 4 discusses our experimental results. Finally, in
section 5, we summarise the main results and make
some concluding remarks.

2 Contributions of this work

We have performed an extensive search in several
venues (conferences, journals, and others) searching
for publications that compare the different communi-
cation APIs. Surprisingly, we could not find any such
results published. While many publications cover per-
formance of each communication API alone, such as
papers on BSD/Winsock [3] or Java [5, 2, 7] or RMI
[1, 4], none of the papers give a systematic perfor-
mance evaluation comparing the communication APIs
side by side. This was one of the motivations for per-
forming this work. Furthermore, while it is not sur-
prising that in a layered system such as that shown
in Figure 1 the overheads will increase from Winsock
to RMI, we do not have any results published that
actually show by how much the performance actually
degrades when using one communication API com-
pared to another. This work demonstrates empiri-
cally the extent to which performance worsens with
different communication APIs. We also compare the
cominunication APIs on two different operating sys-
tems running on the same Intel platform. In doing so,
we are also able to compare the performance delivered
by Java Virtual Machines (JVMs) running on Solaris
x86 versus that running on Windows NT 4.0. Sev-

eral technologies exist that use the underlying com-
munication APIs such as Winsock 2, Java or RMIL
Examples include plug and work architectures such as
Jini [13, 10] or Universal Plug and Play (UPnP) [12]
which use RMI and Java sockets respectively. Appli-
cation designers deploying these technologies will have
a better undertsanding of the performance of their ap-
plications if they understand the relative performance
achieved by the different communication APIs. As a
result, they can invest more time on other issues us-
ing the knowledge the performance results this work
provides.

3 Measurement Procedures and
Testbed Configuration

In this section, we present experimental tests per-
formed on several network communication APIs. The
main goal of these tests was to investigate the over-
heads introduced by the different APIs available today,
and commonly used by network application designers
and developers. We hope these results will give insight
into the performance overheads associated with each
of the communication APIs.

The experimental testbed used included the follow-
ings: a pair of Pentium III workstations with 500
MHz processor, 256 MB RAM, 40 GB hard disk
were used in all tests. Each host was loaded with
two operating systems: Windows NT 4.0 and Solaris.
First, a set of tests was performed between the two
hosts each running Windows NT 4.0. Second, another
set of tests was performed between the two hosts each
running the Solaris operating system (for the Intel
platform). The two workstations were connected
using 100 Mbits/s Ethernet via an Ethernet switch.
All tests were executed on an unloaded Ethernet
network using the TCP/IP protocol stack.

We conducted tests for various network Appli-
cation Programming Interfaces (APIs) including:
Winsock/BSD sockets, Java sockets, and RMI using
throughput and round-trip latency as our performance
metrics. They were measured as follows: Through-
put: Average application to application throughput
was measured by timing bulk data transfers over a
sufficiently long period of time using test programs we
have developed for a range of message sizes; Round-
Trip Time:The test application on one host (one for
each APIs used) echoes a message of a specified size to
the peer application running on the remote host. Ba-
sically, the client machine sends an M-byte message

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC’03)
0-7695-1916-4/03 $17.00 © 2003 IEEE

to the server (timing starts) and waits to receive the
M-byte message back; the interaction was repeated
N times between client and server after which tim-
ing stops. From the N readings obtained, an average
round-trip time for exchanging an M-byte message be-
tween the two workstations was calculated.

4 Experimental Results

4.1 Latency

2000 T T
Winsock ———

ave -—--=-—-
RMI -

1500 | : . -

1000 | { e : A

Round-Trip Latency (microseconds)

500 | Pt . . . -

e

H H i 2 H N H N i
200 300 400 500 600 700 800 900 1000 11
Message size (Bytes)

oo

20000

17500 |- : : —

15000 |- - -1

Roune Trip Lakency (micmseconds)

so000o |- et - e —

2500 |-

12500 |- : - -1
10000 | . i S : .‘,..«" e .

7500 | : : : e -

Meossage alze (Bytes)

Figure 2: Round-trip latency on Windows NT 4.0 for
small and large message sizes.

4.1.1 Latency on Windows NT 4.0

The latency results obtained with the different
communications APIs on Windows NT 4.0 are shown
in Figure 2.

H H H ‘ H i H N
o 2S00 5000 7500 10000 12500 15000 17500 20000 22500

From Figure 2 , we note that for the smallest message
(1 byte), the least latency overhead incurred by
RMI(663 microseconds) is about twice that incurred
by Java sockets (305 microseconds). The minimal
overheads incurred by Winsock and Java socket are
almost the same (305 microseconds). We also note
that the latency for Java sockets is about 4 times
worse than Winsock. However, latency performance
using RMI is only about 1.3 times higher than Java
sockets.

With large message sizes, we observe from Figure 2
that latency using Java sockets is about 2.5 times
higher than latency with Winsock. Latency perfor-
mance with RMI for large messages is about 1.1 times
higher than Java sockets.

4.1.2 Latency on Solaris

In the case of Solaris, for small message sizes (Figure
3), we note that for the smallest message size (1 byte),
minimal latency incurred by RMI (897 microseconds)
is about twice that incurred by Java sockets (407
microseconds). Minimal latency overhead for Java
socket is almost twice that of BSD sockets (about 210
microseconds). But latency performance of RMI is
about 1.3 times that of Java sockets.

With large messages on Solaris, Java sockets give a
four-fold increase in latency compared to BSD sock-
ets. Round-trip latency with RMI is about three times
worse latency in contrast to their BSD counterpart.

4.2 Throughput on Windows NT and
Solaris platforms

From Figure 4, throughput on Windows NT platform
is more stable compared throughput results obtained
on Solaris. On Windows NT, for message sizes greater
than 4 KB, we observe that throughput for Winsock
2 is about 1.8 times the throughput of Java sockets
and about 3.7 times the throughput obtained using
RMI.

From Figure 4, throughput on Solaris is not as stable
as Windows NT, particularly for small message sizes
(less than 4 KB). Similar to Solaris, for message sizes
greater than 4 KB, BSD socket throughput is almost
1.8 times the throughput of Java sockets and almost
3.4 times the throughput obtained with RMIL.

It is interesting to note that on both Windows NT and
Solaris platforms, the throughput performance of Java

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC’03)
0-7695-1916-4/03 $17.00 © 2003 IEEE

=000 T r T T T v T T Bsb

1000 et : : : O G : -

FounctTrip Latency {mcrosectnds)
X
Throughput (Mbisis}

o i H H i H A H " i H ° L H H R i) i
o 100 200 B0O0 400 6500 €00 7OO 800 S00 1000 1100 o 2600 SO00 7600 10000 12500 15000 17500 20000 22500
Meossage size (Bytes) Mesasage size (bytas)
T 100
BSD ?so
Jave --me-—- mve —-—m———
FIMT -9 - R -

17500 |- - 3 B i : -
1s000 |- - - . ",1 .
12500 |- : ; o : /," _ _
10000 - B : . . 5 /-‘ _

7500 |- N s : =

Ao TrpLarey ricmseon)
\
Troughst(Hbis')

5000 |-

2500 |

" ' e L 1 X 1 " 1 e 1 i I 1 1 i 1
) 2500 S000 7500 10000 12500 15000 17500 20000 22500 o 2500 S000 7500 10000 12500 15000 17500 20000 22500
Message size (Bytes) Maessage size (bytes)

Figure 3: Round-trip latency on Solaris for small and Figure 4: Throughput on NT and Solaris.
large message sizes.

found that RMI gives 1.3 times higher latency
is almost twice that obtained with RMI. than Java for small packets (less than 1 KB) on
both Windows and Solaris. Moreover, we also
obtained similar results (i.e. RMI latency is 1.3
times higher than that of Java) when we compare
Java round-trip latency with Winsock and BSD
Sockets round-trip latencies.

5 Conclusions

In this work, we conducted a performance compari-
son of the most common communication APIs namely,
Winsock, BSD Sockets, Java, and RMI. We summa-
rize below our main performance results obtained on
two operating systems namely, Windows NT 4.0 and
Solaris on the Intel platform (using Solaris x86).

e Java socket and RMI are both more stable and
have better performance on Windows NT than
Solaris 8 x86 (on the Intel platform). This leads
us to conclude that the JVM for Solaris (Intel
version) is not as stable as the JVM on Windows

e The throughput performance obtained {on both NT

Windows NT 4.0 and Solaris) over Java is twice
that over RMI. Both Winsock (on Windows) and
BSD Sockets (on Solaris) yield a throughput per-
formance of about 1.8 times higher than Java.

e The performance delivered by BSD and Java
sockets are not consistent and are unstable (for
packet sizes between 1KB and 8 KB) on Solaris

e In the case of the round-trip latency results, we 8 x86 compared to Windows NT 4.0 which gave

TEEE ':a

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC’03) COMPUTER
0-7695-1916-4/03 $17.00 © 2003 IEEE SOCIETY

consistent performance. We confirmed that So-
laris 8 was responsible for the poor performance
by repeating the same test on Solaris 8 running
on the Sparc station (a SPARC Ultra 10) which
yielded good performance. We infer from this re-
sult that the implementation of BSD on Solaris 8
x86 is not stable and since Java sockets use the
underlying native socket (in this case BSD) imple-
mentation, they also give unstable performance.

Finally, as we mentioned early in the paper, we all
know that APIs such as Java and RMI have several
benefits associated with each of them including: plat-
form independence, object oriented, code re-usability,
simplicity, and so on. However, these benefits come at
a cost. For instance, object serialization supported by
RMI facilitates the development of distributed Java
application by abstracting many of the networking is-
sues, it is an important performance inhibitor [7] since
the large overhead in RMI is cause by hierarchy of
stream classes that copy date and call virtual methods
[5]. This paper experimentally demonstrates to appli-
cation developers and designers faced with a choice of
communication APIs, the expected performance to be
gained with each of them and the performance impact
(e.g. by how much performance degrades) APIs such
as Java and RMI have compared to native Winsock
and BSD. Another major benefit of knowing the inher-
ent performance that can be delivered by these APIs
enable developers to invest their time in optimizing
other parts of the application to achieve the high end-
to-end performance objective.

6 Acknowledgements

This work was supported by a grant (EDUD-7824-
000145-US) from Sun Microsystems Inc. (Palo Alto).
The authors thank DV Sreenath for his suggestions on
improving the quality of this paper.

References

[1] S. Ahuja and R. Quintao, “Performance Eval-
uation of Java RMI: A Distributed Object Ar-
chitecture for Internet Based Application”, in
Proceedings of 8th International Symposium on
Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, pages 565-569,
2000.

[2] F. Breg Constantine and D. Polychronopou-
los, “Java Virtual Machine Support for Ob-

ject Serialization”, University of Illinois, Urbana-
Champaign.

[3] C. Krintz and R. Wolski, “Using JavaNws to
Compare C and Java TCP-Socket Performance”,
Journal of Concurrency and Practice and Expe-
rience, Vol. 13, No. 8-9, pages 815-839, 2001.

[4] C. Nester, M. Philippsen, and B. Haumacher, “A
More Efficient RMI for Java”, in Proceedings of
ACM JavaGrande99 Conference, pages 152-159,
San Francisco, June 1999.

[5] J. Maassen et al., “An efficient implementation
of Javas Remote Method Invocation” in Proceed-
ings of ACM Symposium on Principles and Prac-
tice of Parallel Programming , Atlanta, GA, May
1999.

[6] M. Mckusick, K. Bostic, M. Karels, and J. Quar-
terman, “The Design and Implementation of 4.4
BSD Operating System”, Addison-Wesley, ISBN
020-1549794.

[7] R. Nieuwpoort et al., “Wide-Area Parallel Com-
puting in Java”, in Proceedings of ACM 1999
Java Grande Conference, pages 8-14, San Fran-
cisco, CA, June 1999.

[8] http://www.sockets.com/winsock2.htm.

[9] Sun Microsystems Inc., “JavaTM Remote
Method Invocation (RMI) Specification” , Ver-
sion 1.3 of JavaTM 2 SDK Sun Microsystem.

[10] Sun Micrfosystems, “JiniTM Architecture Speci-
fication”, Version 1.0.1 Sun Microsystem, Novem-
ber, 1999.

[11] Sun Microsystems, “What is the Java Platform,”
http://java.sun.com/nav/whatis/, Sun, October
1999.

[12] UPnP Forum, http://www.upnp.org.

[13] J. Waldo, “The Jini Architecture for Network-
Centric Computing”, CACM, Vol. 42. No. 7, July
1999.

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC’03)
0-7695-1916-4/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

