
Spotlight

Dependability
in Peer-to-Peer Systems

A iming to ease the problems associated with
making a variety of items available to multi-
ple users over the Internet, peer-to-peer (P2P)

systems create fully decentralized systems. By
involving lots of peers, computational and storage
capabilities increase; moreover, data replication,
caching, and efficient query routing enhance over-
all performance.

P2P systems can reduce complexity because
each server deals with a smaller set of data and
clients. However, P2P systems’ long-running and
dynamic nature creates dependability issues. In
this article, we consider dependability with refer-
ence to scalability, fault-tolerance, security, and
anonymity properties. Scalability and fault-toler-
ance depend on the number of peers and their
interconnection, but security and anonymity
depend on the systems’ open nature and the Inter-
net’s communication infrastructure. The fact that
any peer can contact any other in a network intro-
duces data-integrity and privacy issues.

In the not-too-distant future, self-adaptable and
dependable systems will emerge from the develop-
ment of nomadic technologies, mobile devices, and
ubiquitous computing. Recent research has used
P2P systems to organize ubiquitous environments1

and to perform worldwide computations.2 Because
most current systems were designed to address spe-
cific application domains, similar concepts have
been addressed with different terminologies and
models. An output of the comparison provided in
this article is an attempt to move toward common

terms and definitions. Because the models under-
lying current P2P systems must be understood to
support a thorough investigation of dependability
properties, we briefly examine the most popular
P2P systems and then compare how these systems
address dependability.

P2P-Based Systems
Most developers initially used P2P technology to
implement file-sharing systems that spanned
Internet-like environments, with a focus on
searching and routing. More recently, they have
used it to implement hash-map-like functionali-
ties (the ability to map a key to a location) in dis-
tributed settings. P2P technology is evolving in
response to peer unreliability, which continues to
further the need for fault-tolerant systems. It has
also become clear that effective systems require
security and anonymity, so encryption and
authentication techniques for large-scale decen-
tralized systems are starting to arrive. P2P systems
have further influenced research into distributed
file systems, which are starting to resemble the
P2P organization models.

Several organizational models with different
degrees of dependability have been proposed over
the past few years. Before discussing specific
dependability issues, though, let’s look at the most
representative P2P systems. They reveal the basic
mechanisms that support the system properties
discussed in the rest of the article. To unify the ter-
minology, we’ll use the term item to refer to any

54 JULY • AUGUST 2004 Published by the IEEE Computer Society 1089-7801/04/$20.00 © 2004 IEEE IEEE INTERNET COMPUTING

Server-centric architectures such as the Web’s suffer from well-known problems

related to application size and increasing user requests.Peer-to-peer systems can

help address some of the key challenges, but this survey of several current P2P

systems shows that dependability remains an open issue. To perform in Internet-

scale applications, P2P systems must address the four major properties of

dependable systems: scalability, fault-tolerance, security, and anonymity.

Editor : Siobhán Clarke • s iobhan .c la rke@cs . t cd . i e

Flavio DePaoli and Leonardo Mariani • Università degli Studi di Milano Bicocca

general entity — a file, object, or other artifact —
stored in a peer in any of these systems.

Napster
Napster (www.napster.com) lets users share audio
files via network nodes. Although one of the old-
est and most famous, however, Napster is a hybrid
rather than a true P2P system (the search service
is centralized). When a peer joins the network, it
uploads information about locally stored files to a
central server, and clients locate these files by
sending requests to that server. Peer-to-peer inter-
actions occur only during file transfer.

Gnutella
In contrast to the Napster approach, Gnutella
(www.gnutella.com)3 supplies an open, decentral-
ized, P2P search protocol. New peers join a Gnutel-
la network by contacting an already connected
peer, which they then use to discover additional
peers by broadcasting ping messages. The Gnutel-
la approach does not require centralization: query
messages are broadcast along the network through
the set of known peers. Each peer receiving a
query first tries to satisfy the request with its local
data and then forwards the message to all known
peers. In this way, a query propagates in the sys-
tem until an associated time-to-live (maximum
number of hops) expires.

P-Grid
The self-organizing P-Grid (www.p-grid.org)4 sys-
tem addresses responsiveness and robustness by
exploiting a tree-based distributed indexing struc-
ture that maps items with nodes according to a
binary-key value. Each peer p is associated with a
node n of the tree; therefore, p becomes responsible
for all items contained in the subtree rooted at node
n. When a new peer joins the network, it computes
routing data via a peer that is already part of P-
Grid and negotiates item responsibility. The con-
struction algorithm requires only local interactions
and guarantees that all the tree’s nodes can be
reached. The tree structure ensures good search-
response time — at most O(log n), where n is the
number of items in the network — and moderates
the amount of routing data stored on each peer.

Chord
By implementing a distributed lookup protocol,
Chord (www.pdos.lcs.mit.edu/chord/)5 addresses
the problem of efficiently locating which nodes
store which particular data items. This protocol

maps peers and items to an m-bit identifier via a
hash function and then arranges them in a “ring”
network of at most 2m peers. Each peer knows at
least its successor peer.

When a peer joins the network, it takes the
position in the ring corresponding to the assigned
hash key and assumes responsibility for items
according to the formula itemID mod 2m =
peerID. The same formula assigns new items to
peers; if the computed peer doesn’t exist, the item
is transferred to the next available peer with a
greater identifier. Ring-structure navigability
increases by making each peer hold a finger table
(a shortcut that reduces the numbers of hops)
with at most m entries. As a result, both lookup
operations and table maintenance can be per-
formed efficiently — O(log n) and O(log2n),
respectively, where n is the number of items in
the network.

CAN
The Content-Addressable Network (CAN)6 is a self-
organizing P2P system that offers a hash-map-like
functionality on Internet-scale systems. CAN con-
ceptually organizes the search space into a d-
dimensional Cartesian coordinate space partitioned
among peers (each area of the space corresponds
to a peer). The items stored in the network are
<key, value> pairs in which keys are computed
via a hash function that associates values to areas.
To enable message routing, each peer must be
aware of peers responsible for neighboring areas;
in a d-dimensional space, a peer therefore stores
references to 2d peers.

A node joins the system by computing a ran-
dom entrance point (a random number in the coor-
dinate space). The peer responsible for the entrance
point splits its search space by selecting one of the
available dimensions and assigning half the search
space to the new peer, which receives items,
creates the new neighboring table, and then dis-
closes its existence to all neighboring peers. To
perform lookup operations, any peer forwards
requests along a straight line in the coordinate
space from the request’s source to its destination.
Therefore, the cost of a lookup is O(dN1/d), where n
is the number of items in the network.

Farsite
Farsite (http://research.microsoft.com/sn/Farsite/)7

is an organization-scale distributed file system that
addresses information dependability and availabil-
ity even if it’s built on mistrusted peers. The oper-

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2004 55

Dependability in Peer-to-Peer Systems

ations it considers are large-scale read-only item
sharing and small-scale read–write item sharing.

Each peer joining the system makes part of its
storage capability available for a distributed direc-
tory service to manage. A set of selected peers (Far-
site’s core group) runs a placement-and-retrieval
algorithm; this group’s presence makes Farsite a
hybrid system. The core group forms a Byzantine-
fault-tolerant group8 that overcomes the lack of
trust and supplies the requested authentication and
security properties by increasing intragroup com-
munication. Message-authentication code (MAC)
authenticates communication between clients and
server groups, whereas certificates and certification
authorities validate authority.

Freenet
Freenet (http://freenet.sourceforge.net/)9 is a
decentralized storage system that focuses on
anonymity, but at the cost of unpredictable
retrieval times. Each peer stores a routing table that
contains its neighbors’ addresses along with
numeric keys corresponding to items stored in
them. This table also helps route requests to the
peers storing nearest key values. The search works
as a steepest-ascent hill climbing with a back-
tracking algorithm that forwards messages for a
maximum number of hops and then backtracks to
follow a different path if it collects no positive
answer. Peers add a new entry in the routing table
whenever they receive either an announcement
message disclosed from a joining peer or a query
message sent from an unknown peer. In Freenet,
nodes can freely join and leave the network: file
persistence is not requested, and files are replicat-
ed on multiple machines.

Oceanstore
Oceanstore (http://oceanstore.cs.berkeley.edu/),10 a
global-scale utility infrastructure for raw data
management, is designed to handle billions of
users and exabytes of data. The system is com-
posed of mistrusted servers; it uses redundancy
and client-side cryptographic techniques to pro-
tect items. The routing model used in Oceanstore
is Tapestry,11 a routing infrastructure focusing on
fault tolerance, automatic repair, and self-organi-
zation that enables item retrieval with O(logb N)
hops. It does this by maintaining a table of O(b *
logbN) entries on each peer (N is the number of
peers, and b is a Tapestry parameter).

Oceanstore associates each item with a respon-
sible party (a group of hosts) that splits the item

into several fragments and then sends them across
the network. A client must collect the fragments to
reconstruct the original item. Any peer can per-
form lookups by contacting the inner ring that
gathers the item’s building blocks via the Tapestry
routing infrastructure.

Scalability
Scalability is the degree of adaptability that a
system exhibits with respect to increasing-load sit-
uations. P2P systems are highly dynamic and
unpredictable in size (growing or shrinking), topol-
ogy (connecting or disconnecting peers), and activ-
ity (number or kind of requests). To ensure high
quality of service, issues such as adaptability with
respect to the number of peers, items, and mes-
sages, as well as the presence of any hot spots
(peers hosting popular items), must be addressed.

Gnutella and Napster systems behave efficiently
when the number of items or peers increases. Nap-
ster reacts by increasing the amount of data main-
tained on the central server (administrators can
increase computational resources to efficiently face
data growth), and Gnutella simply increases its size
by including new peers. As the number of requests
increases, however, Napster and Gnutella suffer
from scalability limits: Napster’s central server eas-
ily becomes overloaded with requests, whereas
Gnutella’s network tends to fill up with messages.
In both systems, a hot spot’s presence has no influ-
ence on routing performance (because searches are
not goal directed), but a peer storing a popular item
might have to transfer it continuously.

One way to solve the problem of increasing
requests is to implement goal-directed searches. P-
Grid, Chord, CAN, and Oceanstore have different
complex infrastructures that enable goal-directed
logarithmic cost searches. Logarithmic searches
scale quite gracefully with respect to increasing
requests, but they fail to deal with hot spots —
peers hosting popular items cannot be protected
from floods of requests. Chord can reduce a
search’s logarithmic cost by first increasing the
amount of data the peers maintain and then
increasing the cost of peers joining or leaving.
CAN allows for similar results by implementing
multiple dimensions.6

Many systems address the problem of fre-
quently requested items by implementing caching
and replica-management mechanisms. For cach-
ing, peers maintain local copies of popular items;
for replica management, a peer loaded with sev-
eral requests distributes copies of the most popu-

56 JULY • AUGUST 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

lar items among its neighbors to share the load.
Farsite implements the caching mechanism for
pathname: peers store responses obtained from
the core group that maps pathnames to physical
locations, and Freenet intensively caches request-
ed items so that peers become specialized for fam-
ilies of similar keys. Oceanstore maintains multi-
ple item fragments spread throughout the
network, whereas CAN implements both caching
and replica management.

For mutable content — items that can change
dynamically — the introduction of cached items
and replicas requires management mechanisms to
deal with any synchronization problems. Updates
on a single item can introduce system inconsis-
tency if copies of that item are not promptly
updated, but immediately updating all copies
might be infeasible because of how many re-
sources system-scale searches for copies consume.
Existing approaches to managing mutable items
are often inaccurate and sacrifice correctness in
favor of efficiency. Among the systems we sur-
veyed, we found that P-Grid can run multiple
depth-first searches, a single breadth-first search,
or searches based on “buddy lists” (lists of peers
sharing the same key) to locate and update copies;4

CAN executes multiple searches for the same item
and selects a valid response by looking at the
number of identical answers. The realization of a
reliable, efficient replica management technique
remains an open issue.

Homogeneous distribution of items among
peers (to reduce the probability of unbalanced
bandwidth and storage consumption) is also an
issue. Several P2P systems run placement algo-
rithms to decide where to store items and zone-
reassignment algorithms to redistribute the search
space’s responsibilities,6 but current approaches do
not guarantee balanced distribution. Moreover,
research in semantic-oriented P2P systems con-
cerning the creation of semantic models and algo-
rithms for placement, searching, and updating is
still in its infancy.

Existing systems pay logarithmic costs for
join, leave, and search operations, but in some
applicative domains, privileging efficiency of
some operations in favor of others could be more
effective. Chord and CAN partially explore an
interesting research direction in defining config-
urable scalability: both offer the possibility of
choosing at deployment time the value of some
of the parameters that affect search, join, and
leave operations.

Fault Tolerance
Fault tolerance is a system’s ability to supply reg-
ular service operations in the presence of hardware
or software faults. In principle, the absence of cen-
tralized control and coordination makes P2P sys-
tems robust with respect to failures that might
occur at any peer. Faults at client peers don’t usu-
ally affect system behavior (because only private
information gets lost), but faults at server peers
can result in data loss and denial of service.

Napster’s centralized nature makes it fragile
with respect to faults: if the central server stops
working, all services become unavailable. To
restore this type of system, server peers might need
to upload data to the centralized server again. Far-
site and Oceanstore eliminate the single failure
point by substituting a Byzantine server group for
the single server.

The pure P2P organizational model implies full
decentralization of services — a radical solution to
failing servers. We can distinguish two meaningful
types of pure P2P systems with respect to fault tol-
erance: those that implement goal-directed searches
and those that implement generic routing strategies.

Pure P2P systems with generic routing strate-
gies (Gnutella and Freenet, for example) are the
best choice for fault tolerance because no one peer
should be more important than any other. Each
implements the same set of functionalities, so a
failing peer loses only locally stored items. In prac-
tice, though, peers in uncontrolled environments
tend to organize themselves as in the small-world
network model:12 a few nodes become strategical-
ly more important than the others because of the
high number of connections they manage. If a peer
with many connections fails, serious consequences
for routing efficiency occur because several peers
can become difficult or impossible to reach.

An alternative solution to uncontrolled topol-
ogy is to manipulate the system-construction
process to support goal-directed searches, as Chord
and CAN do. Chord achieves fault tolerance by

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2004 57

Dependability in Peer-to-Peer Systems

Napster’s centralized nature makes
it fragile with respect to faults: if the
central server stops working, all
services become unavailable.

storing references to r nearest successors in each
peer instead of only storing the next one. More-
over, each peer runs a stabilization algorithm that
maintains correctness on references by checking if
the successor’s predecessor differs from itself. CAN
addresses fault tolerance with several techniques
directly derived from the system model. One tech-
nique is the definition of multiple realities (multi-
ple coordinate spaces): each item is stored once for
each reality, so that if it is no longer available
(because a fault has occurred in the storing peer), a
requestor can still retrieve it from another reality.
Another way to implement fault tolerance in CAN
is to overload coordinate zones — each zone can
be shared among several peers (up to a MAXPEERS
parameter before splitting). This approach reduces
the average path length (placing multiple peers on
the same zone is similar to reducing the number of

peers) and per-hop latency (each peer has multiple
choices at each step). It also improves fault toler-
ance because no vacant zones exist (unless all
peers responsible for the same area crash simulta-
neously, which is highly unlikely). Whenever a
peer is deemed to have died, neighbors execute a
TAKEOVER procedure that reassigns the responsi-
bility for the vacant search space to the neighbor-
ing peer with the smallest volume of data.

Replica and caching mechanisms provide basic
fault-tolerance support independently of the topol-
ogy-management strategy.13 P-Grid replicates
items among peers with the same key value,
whereas CAN addresses replica management by
multiple hash functions that map every item to
multiple places. This latter approach enables repli-
ca location, but at the cost of the hash function’s
computation. Farsite implements replication at
both the server and client sides, so metadata can
migrate to another machine whenever a machine
is unavailable for a certain period of time.
Oceanstore addresses fault tolerance in several
additional ways. In one, it uses the erasure code
technique, which consists of storing items by par-

titioning them in n parts and replicating each part
in an arbitrary number of peers, such that the total
number of copies m should be m > n. In another,
the Tapestry routing infrastructure11 exploits
redundant neighbor pointers to increase reliability.
Finally, Oceanstore implements four repair mech-
anisms that guarantee extreme durability: disk
failure prediction, local server sweeps, distributed
detection and repair, and global sweep.10

Security
Security is defined as a system’s ability to man-
age and protect sensitive information. Early P2P
systems didn’t implement security mechanisms,
but the research community is increasingly pay-
ing attention to security issues, especially for P2P
systems that implement file-system-like features.
P2P systems introduce several challenges for secu-
rity professionals because a malicious peer can act
as either a client or server (mutual trust among
computers should not be assumed). Moreover,
malicious peers could cause a variety of attacks,
from supplying wrong answers to stopping the
entire system.

Hybrid P2P systems that implement the Byzan-
tine Fault Tolerant Protocol8 (Farsite and Oceanstore,
for instance) ensure a certain level of security and
trust because the protocol won’t allow the entire
group to misbehave or fail unless malicious or faulty
peers make up one third of the group’s members. A
drawback is that the Byzantine Fault Tolerant Pro-
tocol is effective only for small groups of servers,
not the large groups of decentralized servers typi-
cally found in pure P2P systems. Farsite’s security
is even greater because MAC authenticates the mes-
sages the core group receives.

Both hybrid and pure P2P systems address
security with encryption techniques. Farsite imple-
ments the convergent encryption technique,14 which
encrypts identical files into the same cipher text
regardless of the user key. It works by computing
a one-way hash of each block of the file and then
encrypting the block with this hash. In turn, the
public keys of all the users with permission to
access the file encrypt the hashes. Farsite also
increases trust by using MAC and certificates.
Oceanstore uses public-key encryption techniques
to protect client-side data. Freenet implements
data-encryption techniques to ensure privacy,
rather than to protect against malicious access.
Accordingly, dictionary attacks can be particular-
ly effective in discovering and collecting pass-
words on Freenet’s encrypted files.

58 JULY • AUGUST 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

Early P2P systems didn’t implement
security mechanisms, but the
research community is increasingly
paying attention to security issues.

Freenet explicitly addresses several types of
attacks. For local eavesdroppers (peers that can
observe activities of another peer), it assures no
protection if the user contacts a malicious eaves-
dropper on the first node of the network, but in all
other cases, encrypted messages reduce eaves-
droppers’ effectiveness. Freenet reveals several
denial-of-service attacks; in particular, it takes into
consideration attempts to fill the network with
junk files and key collisions. (A key collision is
caused when two different files correspond to the
same key value.) To deal with junk file injection,
Freenet can divide the data store into two parts:
one for new files and another for established files
(those with many requests). The rule is that new
files can only displace other new files: an attack
can affect insert operations, but it can’t displace
established files. Another approach is the Hash-
cash technique,15 which slows down normal ser-
vice execution to limit any denial-of-service
attack’s effectiveness.

Freenet also deals with key-collision attacks. If
a malicious peer tries to insert hash-colliding
items, the system checks for the existence of an
item with the same key within a certain scope. This
check makes it very difficult to insert colliding
items. Moreover, if Freenet adopts a content-based
encryption technique, successfully performing
such an attack becomes impossible.

When attacking a P2P system, knowledge of
the actual topology can increase the attack’s
effectiveness. In hybrid systems, attackers focus
on centralization points; for decentralized sys-
tems, attackers can exploit the small-world net-
work model12 to target the peers that manage
either numerous or important wide-range con-
nections. Only a homogeneous distribution of
connections provides no reference points for
attackers. Collaboration among malicious peers
can facilitate discovering both system topology
information and single-peer activity. A group of
malicious peers can also execute very effective
coordinated attacks.

Anonymity
Anonymity is the degree to which a software sys-
tem allows for anonymous operations. In P2P sys-
tems, anonymity is addressed by enabling anony-
mous searches, decoupling service providers and
consumers, and hiding the peers that store data.

Freenet is the only P2P-like storage system that
implements anonymity — of the sender and of the
searched items. In general, any peer can identify a

request’s sender by looking at the message’s depth
value (the maximum number of hops). In Freenet,
this information is obscured by random selection
of the initial depth value and by probabilistically
incrementing it at each step. Freenet achieves
sender and key anonymity by performing a pre-
routing procedure. Once prerouting is finished, a
peer that receives the message won’t know the
original sender’s identity. Anonymity of both
sender and content is also achieved during pre-
routing because nodes along the prerouting path
forward the message by using a succession of pub-
lic keys (which also encrypt the message) rather
than by the key value. Once the prerouting phase
is completed, it is impossible to maintain key
anonymity because the key value is used to route
messages. Freenet also protects the data source (the
peer responding affirmatively to a request) by occa-
sionally updating the data source field contained
in a reply: in so doing, any peer receiving the mes-
sage can’t distinguish between a forwarding peer
and the peer that really stores the searched item.
Anonymity is further improved by forwarding with
finite probability any message with a hops-to-live
equal to one.

P2P systems that do not implement any
anonymizing technique could take advantage of
anonymizing network layers, such as Tarzan.16

Tarzan is a P2P-specific anonymizing network
layer that addresses anonymity by implementing
encryption techniques and multihop routing. Tech-
nically, a message is initially routed among secure
Tarzan hosts and then sent over the Internet net-
work. Tarzan self-checks for correctness, and if
prerouting fails, it automatically tracks for the fail-
ing (or malicious) peer.

Conclusions
Most P2P systems are experimental developments
that focus on specific aspects without aiming to
deliver real systems. The systems we examined are
at different stages of maturity. Several of them
address scalability and fault tolerance, but only a
few of them address security and anonymity — and
only partially, at that. Table 1 (next page) summa-
rizes the results of our inspection.

None of the systems address all four of the
dependability properties we considered, which
implies that further developments are necessary to
deliver dependable systems that effectively sup-
port real Internet-wide applications.

In the case of security, we expect next-
generation P2P systems will be based on mecha-

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2004 59

Dependability in Peer-to-Peer Systems

nisms for protecting sensitive content via
encryption and authentication techniques, rather
then by blocking incoming or outgoing commu-
nication. Firewalls are ineffective, for example,
because it’s impossible to identify static trustable
perimeters on P2P systems. An even greater chal-
lenge is effectively developing fully decentral-
ized authentication and encryption techniques.

Another open issue is that of protecting peers
from coordinated attacks by groups of malicious
peers. We envision approaches based on trust-
able computations; reputation systems could be
the underlying technology for identifying mali-
cious peers.

Several services including those related to fault
tolerance will soon be ported from distributed sys-
tems to P2P systems. In particular, we’ll probably
see self-maintaining and repairing systems soon.

To make P2P a reliable end-user technology,
highly dependable general-purpose P2P frame-
works and middleware must be developed. Such
middleware will provide developers with the APIs

they need for delivering applications with a cus-
tomized degree of dependability.

References
1. M. Takemoto et al., “The Ubiquitous Service-Oriented Net-

work (USON): An Approach for a Ubiquitous World Based

on P2P Technology,” Proc. 2nd IEEE Int’l Conf. Peer-to-

Peer Computing, IEEE CS Press, 2002, pp. 17–24.

2. D.P. Anderson et al., “Seti@home: An Experiment in Pub-

lic-Resource Computing,” Comm. ACM, vol. 45, no. 11,

2002, pp. 56–61.

3. RFC-Gnutella, “The Annotated Gnutella Protocol Specifi-

cation v0.4,” 2001; http://rfc-gnutella.sourceforge.net/.

4. K. Aberer, “P-Grid: A Self-Organizing Access Structure for

P2P Information Systems,” Proc. Int’l Conf. Cooperative

Information Systems, LNCS 2172, Springer-Verlag, 2001,

pp. 179–194.

5. I. Stoica et al., “Chord: A Scalable Peer-to-Peer Lookup Pro-

tocol for Internet Applications,” IEEE/ACM Trans. Net-

working, vol. 11, no. 1, 2003, pp. 17–32.

6. S. Ratnasamy et al., “A Scalable Content-Addressable Net-

work,” Proc. ACM SIGCOMM, ACM Press, 2001, pp. 161–172.

60 JULY • AUGUST 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

Table 1. Peer-to-peer system comparison.

System Application domain Scalability Fault-tolerance Security Anonymity
Napster Sharing of audio files in Low: centralized server N/A N/A N/A

Internet-like environments
Gnutella File sharing in Low: broadcast Broadcast N/A N/A

Internet-like environments
P-Grid Access structure for High: logarithmic costs Replica management N/A N/A

Internet-like environments;
compatible with Gnutella

Chord Hash map functionality High: configurable Extra routing data N/A N/A
in Internet-like environments logarithmic costs

CAN Hash map functionality High: cheap join and Extra routing data; N/A N/A
in Internet-like environments leave; logarithmic ring searches; multiple

lookup; multiple realities; overloading coordinate
dimensions zones; multiple hash functions;

TAKEOVER procedure
Farsite Organization-scale distributed Medium: centralized server Byzantine fault tolerant group; Byzantine server-side N/A

file system group, but with pathname client- and server-replica protocol; convergent
caching, leasing mechanisms, management encryption; certificate
event packaging authority; message

authentication code
Freenet Anonymous file-sharing systems Medium: steepest-ascent hill N/A Data encryption Anonymous data

for Internet-like environments climbing with backtracking; techniques against provider and
caching junk-file and receiver

key-collision attacks
Oceanstore Data management on High: logarithmic costs Byzantine fault tolerance; Byzantine server-side N/A

global-scale environments erasure codes; Tapestry; four protocol; client-side
automatic repair techniques cryptographic techniques

7. A. Adya et al., “Farsite: Federated, Available, and Reliable

Storage for an Incompletely Trusted Environment,” Proc.

5th Symp. Operating Systems Design and Implementation,

Usenix Assoc., 2002, pp. 1–14.

8. M. Castro and B. Liskov, “Practical Byzantine Fault Tol-

erance,” Proc. 3rd Usenix Symp. Operating Systems

Design and Implementation, Usenix Assoc., 1999, pp.

173–186.

9. I. Clarke et al., “Freenet: A Distributed Anonymous Infor-

mation Storage and Retrieval Systems,” Proc. ICSI Work-

shop on Design Issues in Anonymity and Unobservability,

LNCS 2009, Springer-Verlag, 2001, pp. 46–66.

10. S. Rhea et al., “Maintenance-Free Global Data Storage,”

IEEE Internet Computing, vol. 5, no. 5, 2001, pp. 40–49.

11. K. Hildrum et al., “Distributed Object Location in a Dynam-

ic Network,” Proc. 14th ACM Symp. Parallel Algorithm and

Architectures, ACM Press, 2002, pp. 41–52.

12. D. Watts and S. Strogatz, “Collective Dynamics of ‘Small

World’ Networks,” Nature, vol. 393, June 1998, pp. 440–442.

13. G. On, J. Schmitt, and R. Steinmetz, “The Effectiveness of

Realistic Replication Strategies on Quality of Availability

for Peer-to-Peer Systems,” Proc. 3rd IEEE Int’l Conf. Peer-

to-Peer Computing, IEEE CS Press, 2003, pp. 57–65.

14. J.R. Douceur et al., “Reclaiming Space from Duplicate Files

in a Serverless Distributed File System,” Proc. 22th Int’l

Conf. Distributed Computing Systems, IEEE CS Press, 2002,

pp. 617–624.

15. A. Back, Hashcash: A Denial of Service Countermeasure,

2002; www.hashcash.org.

16. M.J. Freedman and R. Morris, “Tarzan: A Peer-to-Peer

Anonymizing Network Layer,” Proc. 9th ACM Conf. on

Computer and Comm. Security, ACM Press, 2002, pp.

193–206.

Flavio DePaoli is an associate professor at Università degli Studi

di Milano Bicocca. His research interests include distrib-

uted systems architecture and languages, e-service com-

puting, multiagent systems, user-centered cooperative sys-

tems, and multiuser interaction. He received a PhD in

computer science from Politecnico di Milano. He is member

of the IEEE and the ACM. Contact him at depaoli@

disco.unimib.it.

Leonardo Mariani is a PhD student at Università degli Studi di

Milano Bicocca. His research interests include testing and

verifying component-based systems, multiagent systems,

and decentralized systems. He is member of the IEEE and

the ACM. Contact him at mariani@disco.unimib.it.

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2004 61

Dependability in Peer-to-Peer Systems

Write for Spotlight

Spotlight focuses on emerging technologies or new aspects of existing
technologies that will provide the software platforms for current and

next-generation Internet applications.
Spotlight articles should describe technologies for use by developers of

advanced Web-based applications. Articles should be 2,000 to 3,000 words.
Guidelines are at www.computer.org/internet/dept.htm.

To check on a submission’s relevance, please contact department edi-
tor Siobhán Clarke at siobhan.clarke@cs.tcd.ie.

computer.org/join/
Complete the online application and

• Take Web-based training courses in technical areas for free

• Receive substantial discounts for our software development professional
certification program

• Get immediate online access to Computer

• Subscribe to IEEE Security & Privacy or any of our 22 periodicals at
discounted rates

• Attend leading conferences at member prices

• Sign up for a free e-mail alias—you@computer.org

Join the IEEE Computer Society online at

T H E W O R L D ' S C O M P U T E R S O C I E T Y

