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A = Future routers must not only forward packets at high speeds,
BSTRACT but also deal with nontrivial issues such as scheduling support
for differential services, heterogeneous link technologies, and backward compatibility with

a wide range of packet formats and routing protocols. In this article, the authors outline
the design issues facing the next generation of backbone, enterprise, and access routers.

The authors also present a survey of recent advances in router design, identifying impor-

tant trends, concluding with a selection of open issues.

outers knit together the constituent networks of

the global Internet, creating the illusion of a uni-
fied whole. While their primary role is to transfer packets
from a set of input links to a set of output links, they must
also deal with heterogeneous link technologies, provide
scheduling support for differential service, and participate in
complex distributed algorithms to generate globally coherent
routing tables. These demands, along with an insatiable need
for bandwidth in the Internet, complicate their design.

Routers are found at every level in the Internet. Routers in
access networks allow homes and small businesses to connect
to an Internet service provider (ISP). Routers in enterprise
networks link tens of thousands of computers within a campus
or an enterprise. Routers in the backbone are not usually
directly accessible to end systems. Instead, they link together
ISPs and enterprise networks with long distance trunks. The
rapid growth of the Internet has created different challenges
for routers in backbone, enterprise, and access networks. The
backbone needs routers capable of routing at high speeds on a
few links. Enterprise routers should have low cost per port
and a large number of ports, be easy to configure, and sup-
port quality of service (QoS). Finally, access routers should
support many heterogeneous high-speed ports and a variety of
protocols at each port, and try to bypass the central office
voice switch.

This article presents the design issues and trends that arise
in these three classes of routers. The following section
describes the structure of a generic router. The section after
that discusses design issues in backbone, enterprise, and
access routers. We then present some recent advances and
trends in router design. Finally, we conclude with a descrip-
tion of some open problems. We note that our main topic of
discussion is packet forwarding; routing protocols, which cre-
ate the forwarding tables, are dealt with only in passing.

COMPONENTS OF A ROUTER

Figure 1 abstracts the architecture of a generic router. A
generic router has four components: input ports, output ports,
a switching fabric, and a routing processor. An input port is
the point of attachment for a physical link and is the point of
entry for incoming packets. Ports are instantiated on line
cards, which typically support 4, 8, or 16 ports. The switching
fabric interconnects input ports with output ports. We classify
a router as input-queued or output-queued depending on the
relative speed of the input ports and the switching fabric. If
the switching fabric has a bandwidth greater than the sum of

the bandwidths of the input ports, pack-
ets are queued only at the outputs, and
the router is called an output-queuned
router. Otherwise, queues may build up at the inputs, and the
router is called an input-queued router. An output port stores
packets and schedules them for service on an output link.
Finally, the routing processor participates in routing protocols
and creates a forwarding table that is used in packet forward-
ing. We now discuss the components of this generic router in
more detail.

An input port provides several functions. First, it carries
out data link layer encapsulation and decapsulation. Second,
it may also have the intelligence to look up an incoming pack-
et’s destination address in its forwarding table to determine its
destination port (this is called route lookup). The route lookup
algorithm can be implemented using custom hardware, or
each line card may be equipped with a general-purpose pro-
cessor. Third, in order to provide QoS guarantees, a port may
need to classify packets into predefined service classes.
Fourth, a port may need to run data-link-level protocols such
as Serial Line Internet Protocol (SLIP) and Point-to-Point
Protocol (PPP), or network-level protocols such as Point-to-
Point Transmission Protocol (PPTP). Once the route lookup
is done, the packet needs to be sent to the output port using
the switching fabric. If the router is input-queued, several
input ports must share the fabric: the final function of an
input port is to participate in arbitration protocols to share
this common resource.

The switching fabric can be implemented using many dif-
ferent techniques (for a detailed survey see [1]). The most
common switch fabric technologies in use today are buses,
crossbars, and shared memories. The simplest switch fabric is
a bus that links all the input and output ports. However, a bus
is-limited in capacity by its capacitance and the arbitration
overhead for sharing this single critical resource. Unlike a bus,
a crossbar provides multiple simultaneous data paths through
the fabric. A crossbar can be thought of as 2N buses linked by
N * N crosspoints: if a crosspoint is on, data on an input bus
is made available to an output bus; otherwise, it is not. How-
ever, a scheduler must turn on and off crosspoints for each set
of packets transferred in parallel across the crossbar. Thus,
the scheduler limits the speed of a crossbar fabric. In a
shared-memory router, incoming packets are stored in a
shared memory and only pointers to packets are switched.
This increases switching capacity. However, the speed of the
switch is limited to the speed at which we can access memory.
Unfortunately, unlike memory size, which doubles every 18
months, memory access times decline only around 5 percent
each year. This is an intrinsic limitation of shared-memory
switch fabrics.
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DESIGN ISSUES Figure 1. Architecture of a router.

With this descriptior| of a generic router in hand, in this
section we turn our gttention to design issues for backbone, masks A with the mask stored with that entry, and if this

enterprise, and access|routers. matches the corresponding network address, adds port to the
set of candidate destination ports. The selected destination is
EACKBONE ROUTERS the candidate port corresponding to the longest mask (we call

The Internet currently has a few tens of backbones that each this the entry with the longest prefix match). For example, con-
serve up to a few thousand smaller networks. Backbone sider a router that has the following entries in its routing
routers interconnect enterprise networks, so their cost is table: {<128.32.1.5/16, 1>, <128.32.225.0/18, 3>,
shared among a large customer base. Moreover, the cost of <128.0.0.0/8, 5>}. A packet with a destination address
wide-area transmissicn links is currently so high that cost is a 128.32.195.1 matches all three entries, so the set of candidate
secondary issue in the; design of backbone routers. The prima- destination ports for this packet is {1, 3, 5}. However, port 3
1y issues are reliability and speed. corresponds to the routing entry with the longest mask (i.e.,

Hardware reliability in backbone routers can be achieved 18). Therefore, the destination port of the packet is port 3.
using much the same techniques as in telephone switches: hot ~ This example outlines the two reasons why looking up a route
spares, dual power surplies, and duplicate data paths through the  is hard. First, the routing table may contain many thousands

routers. These are standard in all high-end backbone routers,  of entries. Thus, it is highly inefficient to match an incoming
and we will not consiier these issues in any detail. Instead, we ~ packet serially with every entry. Indeed, to achieve high rout-
focus on techniques tp achieve high-speed routing. ing speeds, we should tightly bound the worst-case time
The major perfortpance bottleneck in backbone IP routers  required to look up a destination port. Second, an incoming
is the time taken to Jook up a route in the forwarding table. packet may match multiple routing entries. We must find,
On receiving a packet, an input port looks up the packet’s  among matching entries, the one with the longest match.
destination address In its forwarding table to determine the The cost of route lookups increases if packets are small or
packet’s destination jport. The forwarding table stores routing packets are routed to a large number of destinations, so a
entries of the form <|network address/mask, port>. On receiv- cache of frequently visited destinations becomes ineffective.

ing a packet with address 4, the port conceptually cycles We now present some representative measurements to evalu-
through all its forwarding entries. For each entry, the router  ate the situation in current backbones. Figure 2a shows the
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packet size distribution from a 5 min trace collected on a
backbone router in the MCI backbone [3]. We see that
approximately 40 percent packets are 40 bytes long (these cor-
respond to TCP acknowledgment packets). This distribution
implies that current backbone routers must perform a large
number of route lookups every second. One metric of route
diversity is the size of the forwarding cache if routes are kept
in the cache for a given time period. In a trace obtained in
1995, Fig. 2b [4], we find that if routes are kept in a cache for
only 64 s since their last use, we still need a cache of 64,000
entries.

Input-queued and output-queued routers share the route
lookup bottleneck, but each has an additional performance
bottleneck that the other does not. Recall that output-queued
switches must run the switch fabric at a speed greater than the
sum of the speeds of the incoming links. While this can be
solved by building third-generation interconnection networks,
that still leaves the problem of storing packets rapidly in out-
put buffers. The rate at which the output buffer can be
accessed is limited by DRAM or SRAM access times. These
ultimately limit the speed at which an output-queued router
can be run. One way to get around this problem is to place all
queuing at the input. However, with this approach an arbiter
must resolve contention for the switching fabric and output
queue. It is hard to design arbiters that run at high speeds and
can also fairly schedule the switch fabric and output line [5,
6]. We discuss strategies for speeding up output-queued
routers later. ‘

In addition to overcoming bottlenecks in performance at
individual routers, there is an additional design issue that is
often ignored. We believe that the stability and reliability of
routing protocol implementations critically affect the scalabili-
ty of the Internet. Little is known about the stability of net-
works where routers run different versions of the same
protocol, or worse, run different protocols altogether. Thus,
even slight changes in network configuration can lead to seri-
ous and nearly undetectable problems. For example, the
. descriptions of filters to export (import) routes from an interi-
' or gateway protocol to BGP is the cause of many a routing

problems on the Internet. Recent studies have shown that the
routing oscillations which characterize the current Internet
are often the result of small bugs in protocol implementation
or router misconfiguration [7].

ENTERPRISE ROUTERS

Enterprise or campus networks interconnect end systems.
Unlike backbone networks, where speed comes first and cost
is a secondary issue, their primary goal is to provide connec-
tivity to a large number of endpoints as cheaply as possible.
Moreover, support for different service qualities is desirable
because this would allow QoS guarantees at least for traffic
confined to the local area. Most enterprise networks are cur-
rently built from Ethernet segments connected by hubs or
bridges. These devices are cheap and easy to install, and
require no configuration. However, not only does the perfor-
mance of a network built with hubs and bridges degrade with
the network’s size, but there is usually little support for service
differentiation. In contrast, a network built with routers parti-
tions the machines into multiple collision domains and there-
fore scales better with the size of the network. Besides most
routers support some form of service differentiation, at least
allowing multiple priority levels. Routers, however, tend to be
more expensive per port and require extensive configuration
before they can be used. The challenge, therefore, is to build
enterprise routers that have a low cost per port and a large
number of ports, are easy to configure, and support QoS.

Enterprise routers have several additional design require-
ments. Unlike backbone networks, enterprise networks may
carry a significant amount of multicast and broadcast traffic.
Thus, they must carry multicast traffic efficiently. Backbone
routers tend to support only the IP protocol. In contrast,
enterprise networks, which must deal with legacy LAN tech-
nologies, must support multiple protocols, including IP, IPX,
and Vines. They must also support features such as firewalls,
traffic filters, extensive administrative and security policies,
and virtual LANSs. Finally, unlike backbones, which link a
handful of trunks, enterprise routers must provide a large
number of ports. Thus, enterprise router designers must solve
the conflicting design goals of providing a rich
feature set at each port, and reducing the cost
per port. This is not an easy task!

ACCESS ROUTERS
Access networks link customers at home or in 2
small business with an ISP. Access networks have
traditionally been little more than modem pools
attached to terminal concentrators, serving a
large number of slow-speed dialup connections.
However, this simple model of the access net-
work is changing. First, access networks are
beginning to use a variety of access technologies
such as high-speed modems, ADSL, and cable
modems. Second, the use of telephone lines for
accessing the Internet from home has increased
the load on the phone network. The long connec-
tion holding time for Internet dialup connections
creates problems for phone switches. Thus, there
is considerable pressure on access networks to be
aware of the underlying telephone network, and
to try to bypass the voice switch for data calls.
Third, access routers are beginning to provide not
just a SLIP or PPP connection, but also virtual
private network protocols such as PPTP and
IPSec. These protocols need to be run at every
router port. Finally, technologies such as asym-
metric digital subscriber loop (ADSL) will soon
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RECENT ADVA‘NCES AND CURRENT TRENDS

The rapid growth of{the Internet has led to a flurry of new
research in router designs. In this section, we present a selec-
tion of these approaches, along with our observations about
current trends in router design. A note of warning: this is not
meant to be an exhalﬁstive list—it is only a sampling of work
in a rapidly changing field!-

|

HIGH-SPEED ROUTE LOOKUP

We saw previously that one of the major bottlenecks in back-
bone routers is the nged to compute the longest prefix match
for each incoming pzrcket. The speed of a route lookup algo-
rithm is determined by the number of memory accesses it
requires to find the matching route entry, and the speed of
the memory. For example, if an algorithm performs eight
memory lookups and the input port has a memory with an
access time of 60 ns,|the time taken to look up a route is 480
ns, allowing it to dg about 2 million route lookups/s. The
same algorithm, usirﬁg' a costlier memory with a 10 ns access
time, would allow the port to perform 12.5 million lookups/s.
A second consideration in designing forwarding table data
structures is the time taken to update the table. Recent stud-
ies have shown that a routing table changes relatively slowly,
requiring updates only around once every 2 min [7]. This
allows us to use cornplicated data structures that optimize
route lookup at the expense of the time taken to update the
routing table.

The standard daty structure to store routes is a tree, where
each path in the tr¢e from root to leaf corresponds to an
entry in the forwarding table. Thus, the longest prefix match is
the longest path in the tree that matches the destination
address of an incoming packet [8]. Conceptually, a tree-based
algorithm starts at tlie root of the tree and recursively match-
es the children of ttie current node with the next few bits of
the destination address, stopping if no match is found [9].
Thus, in the worst case it takes time proportional to the
length of the destination address to find the longest prefix
match. The key idea in a tree-based algorithm is that most
nodes require storage for only a few children instead of all

possible ones. Such
memory at the expe
memory prices drog
sion. Worse, the cor
need to backtrack t«
worst-case performa
The performan
improved in severa
techniques into:
* Hardware-oriente
¢ Table compaction
* Hashing technique

algorithms, therefore, make frugal use of
nse of doing more memory lookups. As
, this is precisely the wrong design deci-
nmonly used Patricia-tree algorithm may
find the longest match, leading to poor
nce.

ce of route lookup algorithms can be
1 ways.! We classify these improvement

1 techniques
techniques
S

1 These improvements ate commercially very valuable, so they are not well
described in the literature. Our descriptions are meant only as an outline;
nondisclosure agreements preclude greater detail.

|

Well-known hardware-oriented solutions are based on con-
tent-addressable memories (CAMs) and caches. Both tech-
niques scale poorly with routing table size, and cannot be used
for backbone routers that support large routing tables. Some
recent hardware-oriented approaches essentially combine
logic and memory together in a single device, drastically
reducing the memory access time. This “intelligent-memory”
approach is quite general, and can be used in conjunction with
the software techniques described later. A second hardware-
oriented solution is to increase the amount of memory used to
store the routing table. Reference [10] argues that it is feasi-
ble to use a single 1 Gb table to look up a 32-bit address.
Even at current prices, this would cost only about $6500,
which is well within the range of affordability for backbone
routers. Over time, as memory costs drop, this approach
might well be the best one even for enterprise routers. A sub-
tle problem with this approach, however, is that the table
becomes very hard to update: changing a single forwarding
entry might cause several thousand memory locations to be
updated. Cheap special-purpose hardware that can perform
rapid updates on the forwarding table is described in [10].

Table compaction techniques, such as the algorithm
described in [11], exploit the sparse distribution of forwarding
entries in the space of all possible network addresses to build
a complicated but compact data structure for the forwarding
table. The table is then stored in the primary cache of a pro-
cessor, allowing route lookup at gigabit speeds.

Finally, hash-based solutions have also been proposed for
route lookup. The need to determine the longest prefix match
limits the use of hashing. In particular, given a destination
address, we do not know the prefix to use for finding the
longest match. The solution to this problem is to try different
masks, choosing the one that has the longest mask length. The
choice of masks can be iterative [12] or hierarchical, or the
first few bits of the address could be used to find a list of pre-
fix lengths. Unfortunately, none of these solutions scale well
with the size of the destination address.

In recent work, Waldvogel er al. [13] have presented a scal-
able hash-based algorithm that can look up the longest prefix
match for an N bit address in O(log N) steps. Their algorithm
computes a separate hash table for each possible prefix
length. Instead of naively searching for a successful hash start-
ing from the longest possible prefix, their algorithm does a
binary search on the prefix lengths. This requires hash tables
to contain markers that, on a hash failure, point to the correct
smaller-length hash table to search in. The search path for a
particular forwarding entry is compactly stored in the form of
a “rope,” which reduces the storage requirements for markers.
In addition, by precomputing hash tables that hold all for-
warding entries associated with each 16-bit prefix, they can
“mutate” the hash table on the fly, further reducing the num-
ber of memory accesses to an average of two per lookup.

To sum up, we believe that fast route lookup is a solved
problem. This has major implications for ATM switches (see
sidebar).

ADVANCES IN SWITCHING FABRICS

As mentioned in the first section, switching fabrics are usually
implemented as a crossbar, shared memory, or bus. The speed
of a crossbar fabric is limited by the scheduler, that of a
shared memory fabric by memory access speeds, and that of a
bus by bus capacitance and arbitration overhead. The mid-’80s
saw a lot of research in the area of switch fabric design, but
few of these designs were actually built because advances in
bus speeds made them unnecessary. These designs include the
well-known Banyan family of fabrics, along with others such
as the Delta and Omega fabrics (for a survey see [1]). These

IEEE Communication:§ Magazine * May 1998

147

—



designs were revived in the early *90s, mostly for building
large ATM switches. With the recent decline in demand for
ATM, IP routers are being built by wrapping segmentation
and reassembly modules around ATM switch fabric cores. In
these routers, permanent virtual circuits are established from
each port to all the other ports. After a longest-prefix niatch
determines the destination port for an IP packet, it is frag-
mented into ATM cells and switched. The ATM cells are
reassembled at the output port before transmission. Using an
ATM core allows the router to support different QoS streams
in the switching fabric and overcome the problems associated
with switching variable-size packets. However, these designs
inherit some of drawbacks of ATM. First, ATM switches, for
the most part, do not have good support for multicast.2 Multi-
casting data through the switch core requires a VCI to be
mapped to multiple VCIs, and copies of a cell to be generated
either at the input port or within the switch fabric. These
overheads decrease the efficiency of the switching fabric. Sec-
ond, a subtler problem arises because IP traffic control algo-
rithms are usually specified in terms of packets rather than in
terms of cells. Thus, with cell-based fabrics, implementing
semantics such as those required by shared filters in RSVP
can be a challenging task. Despite these drawbacks, the use of
a fixed-size internal switching core seems to be a widespread
design technique, and we will assume the existence of such a
core in the rest of this article.

SPEEDING UP OUTPUT QUEUES

We noted earlier that a major problem in output-queued
switches is the speed at which the output queue can be
accessed. Two design techniques allow this bottleneck to be
overcome. The first is to build very wide memories that can
load an entire cell in a single memory cycle. We can do this
by deploying memory elements in parallel and feeding them
with a cell-wide data bus. Although this extravagant use of
memory is costly, as memory prices continue to drop by 60
percent a year the approach is rapidly becoming attractive. A
second approach to building fast output queues is to inte-
grate a port controller and the associated queues on a single
chip. This approach allows the read/write control logic to
access queues in memory an entire row at a time, and there-
fore at speeds far greater than with external logic. An exam-
ple of this approach can be seen in the 77V400 chipset from
IDT Inc. The key-idea here is to integrate eight serial input
and output port controllers and a shared memory on a single
very large-scale integrated (VLSI) chip. The serial inputs are
parallelized in a shift register, and the entire shift register,
usually containing an ATM cell, is read into the memory in
parallel. When the output port scheduler decides to serve a
packet, it reads the cell in parallel into a shift register, con-
verts it to serial, and transmits it. Switching is accomplished
by deciding which output port controller should receive an
incoming cell. Since the memory can be accessed rapidly, an
output port controller can store eight cells in a single cell
time (at a line rate of 155 Mb/s). The VLSI packaging makes
the chip economical: a 1.2 Gb/s 8-port switch-on-a-chip costs
only around $50. While this approach does not scale to very
large switches, 77V400 chips can be interconnected to form
larger buffered switch fabrics. For instance, a three-stage
buffered Banyan switch can be easily constructed with such
elements. Again, at each stage, cell loss due to simultaneous
cell arrivals on multiple inputs is avoided because of the inte-

2 Currently multicast is not widely supported in the backbone. Efforts like
the IP Multicast Initiative (IPMI) may change this in the near future, mak-
ing multicast support an important feature for backbone routers.

gration of the memory element with the port logic. We
believe that intelligent port controllers, such as IDT’s
77V400, Lucent’s Atlanta, and MMC’s ATMS2000 chlpsets
are the wave of the future.

INPUT-QUEUED SWITCHES

Despite improvements in the speed of output queues, they
are still a significant bottleneck, since, to avoid packet loss,
they must run much faster than the input links. We can
avoid this problem altogether by building input-queued
switches. Input queuning is often deprecated because of the
head-of-line blocking problem: packets blocked at the head
of an input queue prevent schedulable packets deeper within
the queue from accessing the switch fabric. However, by
maintaining per-output queues at each input, head-of-line
blocking can be completely avoided. This still leaves the
problem of arbitrating access to the switch fabric at high
speeds. Recent research suggests that this-may be solvable
with current technology [5]. Consequently, it appears that
router bandwidth can be increased by yet another order of
magnitude by moving to input queuing. Input queuing, how-
ever, suffers from some serious problems that still need reso-
lution. First, packet scheduling algorithms for providing QoS
are usually specified in terms of output queues. It is not
clear how to modify these algorithms to simultaneously
schedule the output queues and the switch fabric. This is a
complex and nontrivial issue: in effect, we are asking each
input port controller to mimic the actions of the entire set of
output port controllers, each of which could conceivably be
transmitting packets on a different link technology. For
example, consider a router that has a fiber distributed data
interface (FDDI), a Fast Ethernet, and a T3 port. If this
router uses input queuing, each input port controller should
schedule packets not only according to the varying transmis-
sion speeds of the output links, but also in accordance with
the transmission policies associated with the disparate links.
In particular, an input queue cannot send a packet to the
Fast Ethernet port if that port is backing off from a collision.
It cannot send a packet to the FDDI port if that port does
not have the token. Clearly, with the diversity of link tech-
nologies, building a general-purpose input port controller is
a challenging if not impossible task. Second, enhanced
router services such as Random Early Discard [14] depend
on the length of the output quene. With an input-queued
switch, the output queue length is not known. Due to these
practical problems, nontrivial input-queued enterprise
routers that deal with heterogeneous links and policies may
never become practical, and hybrid approaches with both
input and output queuing and a moderate degree of speedup
in the switching fabric may be necessary.

SCHEDULING
Suppose that packets arriving at all the input ports of a
router wish to leave from the same output port. If the output
trunk speed is the same as the input trunk speed, only one of
these packets can be transmitted in the time it takes for all
of them to arrive at the output port. In order to prevent
packet loss, the output port provides buffers to store excess
arriving packets, and serves packets from the buffer as and
when the output trunk is free. The obvious way to serve
packets from the buffer is in the order in which they arrived
at the buffer, that is, first-come first-served (FCFS). FCFS
service is trivial to implement, requiring the router or switch
to store only a single head and tail pointer per output trunk.
However, this solution has its problems because it does not
allow the router to give some sources a lower delay than oth-
ers, or prevent a malicious source, which sends an unending
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put queue to approximately partition the trunk service rate
in this manner. All versions of Fair Queuing require packets
to be served in an order different from that in which they
arrived. Consequently, Fair Queuing is more expensive to
implement than FCFS, since it must decide the order in
which to serve incoming packets, and then manage the
queues in order to cirry this out. In general, the higher the
number of conversations going through a router, the costlier
it is to implement Fair Queuing since Fair Queuing requires
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routers. An exhausti
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found in [16].

three important and useful properties.
ction so that a well-behaved source does
due to misbehavior by other sources.

Second, by design it provides fair bandwidth allocation. If the
sum of weights of theisources is bounded, each source is guar-
anteed a minimum share of link capacity. Finally, it can be
shown that if a source is leaky-bucket regulated, independent
of the behavior of the other sources, it receives a bound on its
worst-case end-to-end delay. For these reasons, almost all cur-
rent routers support some variant of Fair Queuing.

A related scheduling problem has to do with the partition-
ing of link capacity amnong different classes of users. Consider
a wide-area trunk shared by two companies. All other things
being equal, in times of congestion the trunk should be equal-
ly shared by packets from both companies. These sort of link-
sharing requirements deal with classes of connections rather
than individual conm:ctlons, and require per-class bookkeep-
ing. In recent work it has been shown that extensions of Fair
Queuing are compatible with hierarchical link-sharing require-
ments [17, 18]. Fast implementations of algorithms that pro-
vide both hierarchical link sharing and per-connection QoS
guarantees are an area of active research [19, 20]. We expect
that all future routers will provide some form of Fair Queuing
at output queues.

REEDUCING PoRT CosT

Both enterprise and access routers support a large number of
ports. Thus, they need to reduce the cost of a port to the bare
minimum. The cost cf a port depends on:
¢ The amount and kind of memory it uses
¢ Its processing power
¢ The complexity of/the protocol used for communication
between the port ctnd the routing processor
Ports built with general-purpose processors, large buffers,
and complex communication protocols tend to be more
expensive than those built using ASICs, with smaller buffers
and simple communication protocols. Choosing between
ASICs and general-purpose processors for a port is not
straightforward. General-purpose processors are costlier, but
allow extensible part functionality, are available off-the-
shelf, and their price/performance ratio improves rapidly
with time. Their cost currently makes them suitable. only for

backbone routers, but their flexibility will eventually make
them attractive for enterprise and access routers. On the
other hand, ASICs are not only cheaper, but can also pro-
vide operations that are specific to routing, such as travers-
ing a Patricia tree. Moreover, the lack of flexibility with
ASICs can be overcome by implementing functionality in the
routing processor. Thus, at the moment it seems to make
sense to use processor-based designs for backbone routers
and ASIC-based designs for the local area. Over time, the
situation may well be reversed.

The cost of a port is proportional to the type and size of
memory on the port. SRAMs offer faster access times, but are -
costlier than DRAMs. In general, backbone routers use
SRAMs, and enterprise and access routers use DRAMs.
Buffer memory is another parameter that is difficult to size.
In general, the rule of thumb is that a port should have
enough buffers to support at least one bandwidth delay prod-
uct worth of packets, where the delay is the mean end-to-end
delay and the bandwidth is the largest bandwidth available to -
TCP connections traversing that router. This sizing allows
TCP connections to open up their transmission windows with-
out excessive congestive losses. The largest bandwidth avail-
able to connections in the Internet today is around 100 Mbys.
In the backbone, assuming conservatively that the mean con-
nection delay is 100 ms, this comes to about'1.125 Mb of
buffering per port. Far less buffering is necessary in enterprise
networks, where the mean connection delay is usually less
than 10 ms, corresponding to a per-port buffering of about
100 kb.

Finally, the cost of the port is also determined by the
complexity of the connections between the control path and
the data path in the line card. In some cases, a routing pro-
cessor sends commands to each port through the switching
fabric and the port’s internal buffers. If command packets
can get lost they need retransmission. Careful engineering
of the control protocol is necessary to reduce the cost of
port control.

ENTERPRISE-LEVEL MANAGEMENT AND CENTRALIZATION

An enterprise or campus may contain many routers under the
control of a single administrator. In this situation, it is often a
good idea to centralize some functions usually associated with
individual routers. For example, a central route server can
compute loop-free routes for the entire enterprise and load
them into each router’s forwarding tables. A similar approach
can be taken for loading multicast forwarding entries, thus
freeing the routers from the burden of participating in com-
plex multicast routing protocols. We call this “enterprise-level
management.” The enterprise-level approach also makes it
easier to implement global policies. For example, an organiza-
tion may want to limit the total amount of resources dedicat-
ed to multicast traffic. Although the mechanisms to restrict
traffic (like policers) may be implemented at each router, the
computation of parameters for the individual policers can be
centralized.

AVOIDING ROUTE LOOKUPS
Instead of reducing the cost of route lookups, backbone
routers can use two techniques to avoid route lookups alto-
gether. First, backbone networks can provide a virtual circuit
interface (e.g., carrying IP over ATM over SONET), and
require edge networks to translate from the destination
address to a VCL Since VClIs are integers drawn from a small
space, they can be looked up with a single memory access.
Moreover, the complexity of a longest prefix match is avoided.
However, the edge network must somehow distribute the
mapping between a VCI (or tag) and the destination port to
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each router in the backbone. This can be achieved through
protocols such as IP switching? and tag switching. The deploy-
ment of such a technique requires a major change to the net-
work. A second technique essentially introduces another level
in the routing hierarchy to reduce the size of routing tables,
making route lookups cheaper. With this approach, backbone
routers only keep routes to destinations served by that back-
bone. All unknown destinations are routed to a “gateway” at a
network access point (NAP). Competing backbone providers
exchange routing information and packets at NAPs. While
this means that global (large) routing tables are needed only
at NAPs, the growth in the number of providers in the NAP
has stressed the scalability of the Border Gateway Protocol
(BGP), which is used to exchange routing information among
peer routers at the NAP.

ROUTER OPERATING SYSTEMS

In the past, routers have been viewed as hardware devices
that are optimized for routing packets at high speeds. Thus,
the software environment on a typical control processor is
bare bones, providing little beyond a basic monitor. There is
a growing realization, however, that router hardware is get-
ting to be a commodity which is easy to build, and the great-
est asset of a router vendor is its software. A parallel trend,
which reinforces this idea, is the notion that by opening up
the router architecture to third parties, router vendors can
leverage them to create enhanced services within the net-
work. Thus, there is an intense focus on the development of
router operating systems: operating systems that are special-
ized to run on routers and provide a carefully controlled
application programming interface (API) to the underlying
hardware. If this trend continues, end users may be able to
install custom software modules within routers to provide ser-
vices such as firewalls, traffic management policies, applica-
tion-specific signaling, and fine-grained control of the routing
policy. There is a fairly large and vocal “open signaling” com-
munity that is lobbying router vendors for precisely this kind
of access to router internals [21]. It is interesting to note that
telephone companies already provide an extremely rich pro-
gramming interface to PBX hardware through the JTAPI
interface [22]. An extreme variant of this trend, dubbed
“active networking,” would allow individual packets to install
software on the fly in routers. It is not clear what perfor-
mance penalty such an approach would exact, but recent
work shows that both the security concerns and the perfor-
mance hit of active networks may be tolerable, at least in
some environments [23].

OPEN PROBLEMS

In this section, we identify some challenging open problems in
router design. We believe that the solutions to these problems
will lead to interesting new trade-offs in the next generation
of IP routers.

FLOW IDENTIFICATION

It is often useful to think of the set of packets traveling
through the Internet between a given source and a given
destination close together in time as constituting a flow. A
flow can result from the set of packets within a long-lasting
TCP connection or from the set of UDP packets in an audio
or video session. By definition flows last for a while, so it is a

3 In IP switching, the backbone tells the edge about the mapping, instead
of the other way around, but the idea is conceptually similar to what we
describe here.

useful optimization to pin resources, such as cache entries,
associated with the current set of flows. Therefore, it is use-
ful to identify flows on the fly by noticing, for instance, that
more than X packets with the same source and destination
IP addresses and TCP port numbers have been seen in the
last Y seconds [24]. Flows may also be associated with real-
time performance guarantees. We can identify these flows by
matching incoming packet headers with a set of prespecified
filters. Since classification needs to be done for each incom-
ing packet, we need fast classification algorithms. Unfortu-
nately, while the algorithms described earlier can look up
routes for 32-bit addresses at line speed, they cannot be easi-
ly modified for fast flow classification. Moreover, we lack
generic yet efficient flow descriptors. For instance, the most
generic classifier is one that masks the source and destina-
tion IP addresses and ports and the protocol number, thus
requiring a lookup on 104 bits of the packet. This sort of
classifier seems difficult to implement at high speed. We
believe that coming up with a concise description of a classi-
fier and a way to match the “best” classifier among the sev-
eral thousand that may be present at a router is an open
problem.

RESOURCE RESERVATION

The Internet has poor support for resource reservations: Eth-
ernet-based LANs, WAN access links, and backbone routers
are geared toward best-effort traffic, with no support even for
the simplest of priority schemes. As Ethernets become
switched and the demand for some form of service quality
increases, we expect to see support for resource reservation in
all three classes of routers. Resource reservation goes hand in
hand with flow classification, because resources are reserved
on behalf of prespecified flows. Unfortunately, this coupling
makes resource reservation at least as hard to solve as this
open problem!

Even if we had efficient flow classifiers, resource reserva-
tion additionally requires either policing, so the demand of an
individual flow is limited, or some form of segregation in
packet scheduling, so over-limit flows are automatically dis-
couraged. Given the complexity of implementing Fair-Queu-
ing-type scheduling algorithms at high speed, there has been
much recent work in coming up with efficient policers. For
example, in the RIO scheme over-limit packets are marked as
low priority and preferentially discarded {25]. The choice of
good policing algorithms and associated pricing schemes is an
open problem.

EASE OF CONFIGURATION

Configuring routess is hard work. Misconfigured routers can
be hard to detect and can cause nearly untraceable perfor-
mance problems. For example, bugs in the configuration of
proxy ARP on routers manifest themselves only as a myste-
rious increase in network delay [26], We believe that simple
and intuitive abstractions of the underlying network func-
tionality would go a long way in solving these problems.
These abstractions remain elusive. Configuration becomes
harder if the functionality, such as limiting the amount of
multicast traffic in a network, requires the simultaneous
configuration of more than one router in the network.
Interaction between inconsistent configurations can cause
networkwide problems and failures. It is not always possible
to visually examine configuration files to discover mistakes
and inconsistencies. We believe that the next generation of
configuration tools will need rule-based and simulation-
based subsystems to test a configured router before
installing it in the field. This is a difficult and interesting
open problem.
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STABILITY OF LARGE SYSTEMS

Recall that router hardware can be made more reliable by
adding hot spares, dual power supplies, and duplicate data
paths. In contrast to hardware reliability, which is a well
understood and solved problem, software reliability remains a
challenging open problem. We believe that stability of router
software is a necessary prerequisite for the reliability of a
large network. Software stability is hard to achieve because
software state is affected by interaction among different fea-
tures. For example, the addition of a BGP (exterior routing)
attribute may affect the calculation of routes exported to inte-
rior routing protocols. Furthermore, interaction between bugs
from different vendors [7] can lead to persistent instabilities in
the network. Simulation may not be very helpful since it is dif-
ficult to reproduce bugs in implementations, and thus the
exact behavior of nodes in the network. We believe the one
solution to software reliability may lie in adding features to
protocol implementations, similar to the support for multicast
traceroute in mrouted, which allow us to detect and isolate
problems. This would at least allow us to track the cause for
instability once problems occur.

- ACCOUNTABILITY

The introduction of differential service in the Internet must
necessarily be accompanied by pricing. Pricing requires router
support for accounting. The cost and feasibility of accounting
support depends on the granularity at which accounting is
done. Similar to flow identification, where coming up with a
concise definition of a classifier and a way to match the best
classifier is hard, a concise definition of an account and a way
to identify and bill ari account is an open problem.

'CONCLUSIONS

IP routers are in the midst of great change, due to both cus-
tomer pull and technology push. Customers are demanding
higher bandwidth, greater reliability, lower cost, greater flexi-
bility, and ease of configuration. Simultaneously, technology,
in the form of ATM switching cores and fast route-lookup
algorithms, has allowed router vendors to build the next gen-
eration of routers. We believe that the advances described in
this article, such as the use of ATM cores, better output queu-
ing, advanced scheduling algorithms, avoiding route lookups,
and centralized administration, will be the distinguishing fea-
tures of this generation. While these advances have solved
some difficult problems, important issues still remain unre-
solved. We believe that understanding the stability of a net-
work of routers is a critical open issue. Trading off cost,
speed, flexibility, and ease of configuration, as always, will be
a challenge for router designers in years to come.
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