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AUTHOR’S INTRODUCTION 

he  Internet’s Transmission Control Protocol,  or  
TCP,  has proved remarkably adaptable,  working 
well across a wide range of hardware and operating 
systems, l ink capacit ies,  and  round t r ip  delays.  T None the less, there has been a background chorus 

of pessimism predicting that TCP is about to run out of 
steam, that the next throughput objective will prove its 
downfall, or that it cannot be ported to the next smaller 
class of processor. These predictions sometimes disguise 
the desire to develop an alternative, but they are often 
triggered by observed performance limitations in the cur- 
rent generation of TCP. However, unless one looks care- 
fully, one  may mistake the source of these limitations, 
and accuse the protocol itself of problems when the actu- 
al limit is something else: the memory bandwidth of the 
hos t  system, a poor  implementa t ion ,  o r  just  a tun ing  
problem. 

Innovation proceeds so fast in our  field that  we a re  
often tempted to  jump to something new and supposedly 
better without understanding what we built the last time. 
Computer Science leaves a trail of half-analyzed artifacts 
behind in its rush to  the future. This is especially true in 
performance, when Moore’s law offers us a factor-of-two 
improvement if we just take the next 18 months off. But 
unless we study what we now have, we are  prey to  false 
myths and superstition about the cause of poor  perfor- 

mance, which can lead us in fruitless directions when we 
innovate. 

The project in this article had a very simple goal. We 
wanted to  try to  understand one  aspect of TCP perfor- 
mance: the actual costs that arise from running the TCP 
program on the host processor, t he  cost of moving the 
bytes in memory,  and  so on. These  costs  of necessity 
depend on the particular system, but by taking a typical sit- 
uation - the Berkeley BSD TCP running on the Unix oper- 
ating system on an  Intel  processor - we could at  least  
establish a relevant benchmark. 

What we showed was that the code necessary to imple- 
ment TCP was not the major limitation to overall perfor- 
mance.  In  fact ,  in this tes ted system (and  many o the r  
systems subsequently evaluated by others) the throughput 
is close to being limited by the memory bandwidth of the 
system. We are hitting a fundamental limit, not an artifact 
of poor design. Practically, other parts of the OS had larg- 
er overheads than TCP. 

Since this art icle,  we have seen a matura t ion  in the  
understanding of TCP performance, we have seen better 
network “science” - a willingness to study and understand 
what has been built - and we have seen a more realistic set 
of expectations about performance, both in the research 
context and in the deployed systems we have to  live with 
every day. 
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hile networks, especially local 
area networks, have been getting 
faster, perceived throughput at 
the application has not always 
increased accordingly. Various 
performance bottlenecks have 
been encountered, each of which W One aspect of has networking to be analyzed often and suspected corrected. of 

contributing to low throughput is the transport 
layer of the protocol suite. This layer, especially 
in connectionless protocols, has considerable 
functionality, and is typically executed in soft- 
ware by the host processor at the end points of 
the network. It is thus a likely source of process- 
ing overhead. 

While this theory is appealing, a preliminary 
examination suggested to us that other aspects 
of networking may be a more serious source of 
overhead. To test this proposition, a detailed 
study was made of a popular transport protocol, 
Transmission Control Protocol (TCP) [l]. This 
article provides results of that study. Our conclu- 
sions are that TCP is in fact not the source of 
the overhead often observed in packet process- 
ing, and that it could support very high speeds if 
properly implemented. 

TCP 
TCP is the transport protocol from the Internet 
protocol suite. In this set of protocols, the func- 
tions of detecting and recovering lost or corrupt- 
ed packets, flow control, and multiplexing are 
performed at the transport  level. TCP uses 
sequence numbers, cumulative acknowledgment, 
windows, and software checksums to implement 
these functions. 

TCP is used on top of a network-level protocol 
called Internet Protocol (IP) [2]. This protocol, 
which is a connectionless or datagram packet 
delivery protocol, deals with host addressing and 
routing, but the latter function is almost totally 
the task of the Internet-level packet switch, o r  
gateway. IP also provides the ability for packets to 
be broken into smaller units (fragmented) on 
passing into a network with a smaller maximum 
packet size. The IP layer at the receiving end is 
responsible for reassembling these fragments. For 
a general review of TCP and IP, see [3] or [4]. 

Under IP is the layer dealing with the specific 
network technology being used. This may be a 
very simple layer in the case of a local area net- 
work, or a rather complex layer for a network 
such as X.25. On top of TCP sits one of a num- 
ber of application protocols, most commonly for 
remote login, file transfer, or mail. 

THE ANALYSIS 
This study addressed the overhead of running 
TCP and IP (since TCP is never run without IP) 
and that of the operating system support needed 
by them. It did not consider the cost of the driv- 
er for some specific network, nor did it consider 
the cost of running an application. 

The study technique is very simple: we com- 
piled a TCP, identified the normal path through 
the code, and counted the instructions. However, 
more detail’is required to put our work in context. 

The TCP we used is the currently distributed 
version of TCP for UNIX from Berkeley [5].  By 
using a production quality TCP, we believe that 
we can avoid the charge that our  TCP is not 
fully functional. 

While we used a production TCP as a starting 
point for our analysis, we made significant 
changes to the code. To give TCP itself a fair 
hearing, we felt it was necessary to remove it 
from the UNlX environment, lest we be con- 
fused by some unexpected operating system 
overhead. 

For example, the Berkeley implementation of 
UNIX uses a buffering scheme in which data is 
stored in a series of chained buffers called mbufs. 
We felt that this buffering scheme, as well as the 
scheme for managing timers and other system 
features, was a characteristic of UNIX rather 
than of the TCP, and that it was reasonable to 
separate the cost of TCP from the cost of these 
support functions. At the same time, we wanted 
our evaluation to be realistic. So it was not fair 
to altogether ignore the cost of these functions. 

Our approach was to take the Berkeley TCP 
as a starting point, and modify it to better give a 
measure of intripic costs. One of us (Romkey) 
removed from the TCP code all references to 
UNIX-specific functions such as mbufs, and 
replaced them with working but specialized ver- 
sions of the same functions. To ensure that the 
resulting code was still operational, it was com- 
piled and executed. Running the TCP in two 
UNIX address spaces and passing packets by an 
interprocess communication path, the TCP was 
made to open and close connections and pass 
data. While we did not test the TCP against 
other implementations, we can be reasonably 
certain that the TCP that resulted from our test 
was essentially a correctly implemented TCP. 

The compiler used for this experiment gener- 
ated reasonably efficient code for the Intel  
80386. Other experiments we have performed 
tend to suggest that for this sort of application 
the number of instructions is very similar for an 
80386, a Motorola 68020, or even an RISC chip 
such as the SPARC. 

FINDING THE COMMON PATH 
One observation central  to the efficient 

implementation of TCP is that while there are 
many paths through the code, there is only one 
common one. While opening or closing the con- 
nection, or after errors, special code will be exe- 
cuted. But none of this code is required for the 
normal case. The normal case is data transfer, 
while the TCP connection is established. In this 
state, data flows in one direction, and acknowl- 
edgment and window information flows in the 
other. 

In writing a TCP, it is important to optimize 
this path. In studying the TCP, it was necessary 
to find and follow it in the code. Since the Berke- 
ley TCP did not separate this path from all the 
other cases, we were not sure if it was being exe- 
cuted as efficiently as possible. For this reason, 
and to permit a more direct analysis, we imple- 
mented a special “fast path” TCP. When a pack- 
e t  was received, some simple tests were 
performed to see whether the connection was in 

TCP is  used on top 
of a network-level 

protocol called 
Internet Protocol 

(IP). This protocol, 
which is a 

connectionless or 
datagram packet 
delivery protocol, 

deals wi th  host 
addressing and 
routing, but  the 
lat ter  function is 

almost total ly the 
task of  the Internet- 
level packet switch, 

or gateway. 
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an established state, the packet had no special 
control flags on, and the sequence number was 
expected. If so, control was transferred to the 
fast path. The version of the TCP that we com- 
piled and tested had this fast path, and it was 
this fast path that we audited. 

There are actually two common paths through 
the TCP, the end sending data and the end 
receiving it. In general, TCP permits both ends 
to,do both at once, although in the real world it 
happens only in some limited.cases. But in any 
bulk data example, where throughput is an issue, 
data almost always flows in only one direction. 
One end, the sending end, puts data in its outgo- 
ing packets. When it receives a packet, it finds 
only control information: acknowledgments and 
windows. 

The  other  receiving end finds data i n  its 
incoming packets and sends back control infor- 
mation. In this article, we will use the terms 
sender and receiver to describe the direction of 
data flow. Both ends really do receive packets, 
but only one end tends to receive data. In Fig. 1, 
we illustrate how our terms describe the various 
steps of the packet processing. 

A FIRST CASE STUDY: INPUT PROCESSING 
A common belief about TCP is that the most 
complex, and thus most costly, part is the pack- 
et-receiving operation. In fact as we will discuss, 
this belief seems false. When receiving a packet, 
the program must proceed through the packet, 
testing each field for errors and detcrmining the 
proper action to take. In contrast, when sending 
a packet, the program knows exactly what actions 
are intended and essentially has to  format the 
packet and start the transmission. 

A preliminary investigation tended to support 
this model, so for our first detailed analysis, we 
studied the program that receives and processes 
a packet. 

There are three general stages to the TCP 
processing. In the first, a search is made to find 
the local state information (called the Tiansmis- 
sion Control Block,.or TCB) for this TCP con- 
nection. In the second, the TCP checksum is 
verified. This requires computing a simple func- 
tion of all the bytes in the packet. In the third 

stage, the packet header is processed. (These 
steps can he reordered for greater efficiency, as 
we will discuss later.) 

We chose not to study the first two stages. 
The checksum cost depends strongly on the raw 
speed of the environment and the detailed cod- 
ing of the computation. The lookup function 
similarly depends on the details  of the data 
structure, the assumed number of connections, 
and the potential for special hardware and algo- 
rithms. We will return to these two operations in 
a later section. but in  the oresent analvsis. thev 

I , ,  

are omitted. 
The follosine analvsis thus covers the TCP I ,  

processing from the point where the packet has 
been checksummed and the TCB has been 
found. It covers the processing of all the header 
data and the resulting actions. 

The packet input processing code has rather 
different paths for the sender and receiver of 
data. The overall numbers are the following: 

Sender of data: 191 to 213 instructions 
Receiver of data: 186 instructions 

A more detailed breakdown nrovides further 
insight. 

Both sides contain a common oath of 154 

96 IEEE tommuniiotlonr Mogoiine 50h A n n i v e w  Commemomtlve IisuejMoy 2002 



TCP OUTPUT PROCESSING 
We subjected the output side of TCP to an anal- 
ysis that was somewhat less detailed than that of 
the input side. We did not program a fast path, 
and we did not attempt to separate the paths for 
data sending and receiving. Thus, we have a sin- 
gle number that is a combination of the two 
paths and which (by inspection) could be signifi- 
cantly improved by an optimization of the com- 
mon path. 

We found 235 instructions to send a packet in 
TCP. This number provides a rough measure of 
the output cost, but it is dangerous to compare it 
closely with the input processing cost. Neither 
the output side nor the input side had been care- 
fully tuned, and both could be reduced consider- 
ably. Only if both paths had received equivalent 
attention would a direct comparison be justified. 
Our subjective conclusion in looking at the two 
halves of the TCP is that our starting assumption 
(the receiving side is more complex than the 
sending side) is probably wrong. In fact, TCP 
puts most of its complexity in the sending end of 
the connection. This complexity is not a part of 
packet sending, but a part of receiving the con- 
trol information about that data in an incoming 
acknowledgment packet. 

THE COST OF IP 
In the normal case, IP  performs very few 

functions. Upon inputting of a packet, it checks 
the header for correct form, extracts the proto- 
col number, and calls'the TCP processing func- 
tion. The executed path is almost always the 
same. Upon outputting, the operation is even 
more simple. 

The instruction counts for IP were as follows: 
Packet receipt: 57 instructions 
Packet sending: 61 instructions 

AN OPTIMIZATION EXAMPLE: HEADER PREDICTION 

The actual sending of a packet is less complex 
than the receiving of one. There is no question 
of testing for malformed packets, or of looking 
up a TCB. The TCB is known, as is the desired 
action. 

One  example of a simple operation is the 
actual generation of the outgoing packet header. 
IP  places a fixed-size, 20-byte header on  the 
front of every IP packet, plus a variable amount 
of options. Most IP packets carry no options. Of 
the 20-byte header, 14 of the bytes wiil be the 
same for all IP packets sent by a particular TCP 
connection. The IP length, ID, and checksum 
fields (six bytes total) will probably be different 
for each packet. Also, if a packet carries any 
options, all packets for that TCP connection will 
be likely to carry the same options. 

The  Berkeley implementation of UNIX 
makes some use of this observation, associating 
with each connection a template of the IP and 
TCP headers with a few of the fixed fields filled 
in. To get better performance, we designed an 
IP layer that created a template with all the con- 
stant fields filled in. When TCP wished to send a 
packet on that connection, it would call IP and 

pass it the template and the length of the packet. 
Then IP would block-copy the template into the 
space for the IP header, fill in the length field, 
fill in the unique ID field, and calculate the IP 
header checksum. 

This idea can also be used with TCP, as was 
demonstrated in an earlier, very simple TCP 
implemented by some of us at MIT [6]. In that 
TCP, which was designed to support  remote 
login, the entire state of the output side, includ- 
ing the unsent data, was stored as a preformat- 
ted output packet. This reduced the cost of 
sending a packet to a few lines of code. 

A more sophisticated example of header pre- 
diction involves applying the idea to the input 
side. In the most recent version of TCP for 
Berkeley UNIX, one of us (Jacobson) and Mike 
Karels have added code to precompute what Val: 
ues should be found in the next incoming packet 
header for the connection. If the packets arrive 
in order, a few simple comparisons suffice to  
complete header processing. While this version 
of TCP was not available in time to permit us to 
compile and count the instructions, a superficial 
examination suggests that it should substantially 
reduce the overhead of processing compared to 
the version that we reviewed. 

S u P P o RT F u N CT I o N s 
THE BUFFER LAYER 

The most complex of the support functions is 
the layer that manages the buffers which hold 
the data at the interface to the layer above. Our 
buffer layer was designed to match high-through- 
put bulk data transfer. It supports an allocate- 
and-free function and a simple get-and-put 
interface, with one additional feature to support 
data sent but not yet acknowledged. All the 
bookkeeping about out-of-order packets was 
performed by TCP itself. 

The buffer layer added the following costs to 
the processing of a packet: 

Sending a data packet: 40 instructions 
Receiving a data packet: 35 instructions 
Receiving an acknowledgment (may free a 
buffer): 30 instructions 
It might be argued that our buffer layer is too 

simple. We would accept that argument, but are 
not too concerned about it. All transport proto- 
cols must have a buffer layer. In comparing two 
transport protocols, it is reasonable to assume 
(to first order) that if they have equivalent ser- 
vice goals, then they will have equivalent buffer 
layers. 

A buffer layer can easily grow in complexity 
to swamp the protocol itself. The reason for this 
is that the buffer layer is the part of the code in 
which the demand for varieties of service has a 
strong effect. For example, some implementa- 
tions of TCP attempt to provide good service to 
application clients who want to deal with data 
one byte at a time; as well as others who want to 
deal in large blocks. To  serve both types of 
clients requires a buffer layer complex enough to 
fold both of these models together. In an infor- 
mal study, done by one of us (Clark), of another 
transport protocol, an extreme version of this 
problem was uncovered: of 68 pages of code 
written in C, which seemed to be the transport 

The most complex 
of the support 

functions i s  the layer 
tha t  manages the 
buffers which hold 

the data a t  the 
interface to  the 

layer above. Our 
buffer layer was 

designed to  match 
high-throughput bulk 

data transfer. 
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Having an end-to-end 

checksum tha t  i s  
computed after the 

packet i s  actually in 
main memory 

provides a level of 
protection tha t  is 

very valuable. 
However, computing 
this checksum using 

the central processor 
rather than some 

outboard chip may 
be a considerable 

burden on the 
protocol. 

protocol, more than 60 were found to be the 
buffer layer and interfaces to other protocol lay- 
ers, and only about six were the protocol. 

The  problem of the buffer layer is made 
worse by the fact that the protocol specifiers do 
not admit that such a layer exists. It is not a part 
of the I S 0  reference model, but is left as an 
exercise for the implementor. This is reasonable, 
within limits, since the design of the buffer layer 
has much to do with the particular operating sys- 
tem. (This, in fact, contributed to the great sim- 
plicity of our buffer layer; since there was no 
operating system to speak of, we were free to 
structure things as needed, with the right degree 
of generality and functionality.) 

However, some degree of guidance to  the 
implementor is necessary and the specifiers of a 
protocol suite would be well served to give some 
thought to the role of buffering in their architec- 
ture. 

TIMERS AND SCHEDULERS 
In TCP, almost every packet is coupled t o  a 
timer. On sending data, a retransmit timer is set. 
On receipt of an acknowledgment, this timer is 
cleared. On receiving data, a timer may be set to 
permit dallying before sending the acknowledg- 
ment. On sending the acknowledgment, if that 
timer has not expired, it must be cleared. 

The overhead of managing these timers can 
sometimes be a great burden. Some operating 
systems’ designers did not think that timers‘ 
would be used in this demanding a context, and 
made no effort to control their costs. 

In this implementation, we used a specialized 
timer package similar to the one described by 
Varghese [7]. I t  provides very low-cost timer 
operations. In our version the costs were: 

Set a timer: 35 instructions 
Clear a timer: 17 instructions 
Reset a timer (clear and set together): 41 
instructions 

CHECKSUMS AND TCBS: THE MISSING STEPS 
In the discussion of TCP input processing above, 
we intentionally omitted the costs for computing 
the TCP checksum and for looking up the TCB. 
We now consider each of these costs. 

The TCP checksum is a point of long-stand- 
ing contention among protocol designers. Hav- 
ing an end-to-end checksum that is computed 
after the packet is actually in main memory pro- 
vides a level of protection that is very valuable 
[SI. However, computing this checksum using the 
central processor rather than some outboard 
chip may be a considerable burden on the proto- 
col. In this article, we do not want to take sides 
on  this matter. We only observe that “you get 
what you pay for.” A protocol designer might try 
to make the cost optional, and should certainly 
design the checksum to be as efficient as possi- 
ble. 

There are a number of processing overheads 
associated with processing the bytes of the pack- 
et rather than the header fields. The checksum 
computation is one of these, but there are oth- 
ers. In a later section, we consider all the costs 
of processing the bytes. 

Looking up the TCB is also a cost somewhat 

unrelated to  the details of TCP. That is, any 
transport protocol must keep state information 
for each connection, and must use a search func- 
tion to find this for an incoming packet. The 
only variation is the number of bits that must be 
matched to find the state (TCP uses 96, which 
may not be minimal), and the number of con- 
nections that are assumed to be open. 

Using the principle of the common path and 
caching, one can provide algorithms that are 
very cheap. The  most simple algorithm is to 
assume that the next packet is from the same 
connection as the last packet. To check this, one 
need only pick up a pointer to the TCB saved 
from last time, extract from the packet and com- 
pare the correct 96 bits, and return the pointer. 
This takes very few instructions. One  of us 
(Jacobson) added such a single-entry TCB cache 
to his TCP on UNIX, and measured the success 
rate. Obviously, for any bulk data test, where the 
TCP is effectively dedicated to a single connec- 
tion, the success rate of this cache approaches 
100 percent. However, for a TCP in general  
operation, the success rate (often called the “hit 
ratio”) was also very high. For a workstation in 
general use (opening 5,715 connections over 38 
days and receiving 353,238 packets), the single- 
entry cache matched the incoming packet 93.2 
percent of the time. For a mail server, which 
might be expected to have a much more diverse 
set of connections, the measured ratio was 89.8 
percent (over two days, 2,044 conuections, and 
121,676 incoming packets). 

If this optimization fails too often to be use- 
ful, the next step is to  hash the 96 bits into a 
smaller value, perhaps an 8-bit field, and use this 
to  index into an array of linked lists of TCBs, 
with the most recently used TCB sorted first. If 
the needed TCB is indeed first on the list select- 
ed by the hash function, the cost is again very 
low. A reasonable estimate is 25 instructions. 
We will use this higher estimate in the analysis 
to follow. 

SOME SPEED PREDICTIONS 
Adding all these costs together, we see that the 
overhead of receiving a packet with control 
information in it (which is the most costly ver- 
sion of the processing path) is about 335 instruc- 
tions. This includes the TCP-level and IP-level 
processing, our  crude estimate of the cost of 
finding the TCB and the buffer layer, and reset- 
ting a timer. Adding up the other versions of the 
sending and receiving paths yields instruction 
counts of the same magnitude. 

With only minor optimization, an estimate of 
300 instructions could be justified as a round 
number to use as a basis for some further analy- 
sis. If the processing overhead were the only bot- 
tleneck, how fast could a stream of TCP packets 
forward data? 

Obviously, we must assume some target pro- 
cessor to estimate processing time. While these 
estimates were made for an Intel  80386, we 
believe the obvious processor is a 32-bit RISC 
chip, such as  a SPARC chip o r  a Motorola 
88000. A conservative execution rate for such a 
machine might be 10 MIPS, since chips of this 
sort  can be  expected to  have a clock rate  of 

90 
’ 
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twice that or more, and execute most instruc- 
tions in one clock cycle. (The actual rate clearly 
requires a more detailed analysis-it depends on 
the number of data references, the data fetch 
architecture of the chip, the supporting memory 
architecture, and so on. For this article, which is 
only making a very rough estimate, we believe 
that a working number of 10 MIPS is reason- 
able.) 

In fairness, the estimate of 300 instructions 
should be  adjusted for the  change from the 
80386 to an RISC instruction set. However, 
b.ased on another study of packet processing 
code, we found little expansion of the code when 
converting to an RISC chip. The  operations 
required for packet processing are so simple that 
no  matter what processor is being used, the 
instruction set actually utilized is an RISC set. 

A conservative adjustment would be to  
assume that 300 instructions for a 80386 would 
be 400 instructions for an RISC processor. 

At 10 MIPS, a processor can execute 400 
instructions in 40 ps, or 25,000 packetsls. These 
processing costs permit rather high data rates. 

If we assume a packet size of 4,000 bytes 
(which would fit in an FDDI frame, for exam- 
ple), then 25,000 packetsls provides 800 Mb/s. 
For TCP, this number must be reduced by tak- 
ing into account the overhead of the acknowl- 
edgment packet. The Berkeley UNIX sends one 
acknowledgment for every other data packet 
during bulk data, so we can assume that only 
two out of the three packets actually carry data. 
This yields a throughput of 530 Mb/s. 

Figuring another way, if we assume an FDDI 
network with 100 Mb/s bandwidth, how small 
can the packets get before the processing per 
packet limits the throughput? The answer is 500 
bytes. 

These numbers are very encouraging. They 
suggest that it is not necessary to revise the pro- 
tocols to utilize a network such as FDDI. It is 
only necessary to implement them properly. 

W H Y  ARE PROTOCOLS SLOW? 
The numbers computed above may seem hard to 
believe. While the individual instruction counts 
may seem reasonable, the overall conclusion is 
not consistent with observed performance today. 

We believe that the proper conclusion is that 
protocol processing is not the real source of the 
processing overhead. There are several others 
that are more important. They are just harder 
to find, and the TCP is easier to  blame. The 
first overhead is the operating system. As we 
discussed above, packet processing requires con- 
siderable support from the system. It is neces- 
sary to  take an interrupt ,  allocate a packet 
buffer, free a packet buffer, restart  the 110 
device, wake up a process (or two or three), and 
reset a timer. In a particular implementation, 
there may be other costs that we did not identi- 
fy in'this study. 

In a typical operating system, these functions 
may turn out to be very expensive. Unless they 
were designed for exactly this function, they may 
not match the performance requirements at all. 

A common example is the timer package. 
Some timer packages are designed under the 

assumption that the common operations are set- 
ting a timer and having a timer expire. These 
operations are made less costly at the expense of 
the operation of unsetting or clearing the timer. 
.But that is what happens on every packet. 

It may seem as if these functions, even if not 
optimized, are small compared to TCP. This is 
true only if TCP is big. But, as we discovered 
above, TCP is small. A typical path through TCP 
is 200 instructions; a timer package could cost 
that much if not carefully designed. 

The other major overhead in packet process- 
ing is performing operations that  touch the 
bytes. The example associated with the transport 
protocol is computing the checksum. The more 
important one is moving the data in memory. 

Data is moved in memory for two reasons. 
First, it is moved to separate the data from the 
header and get the data into the alignment need- 
ed by the application. Second, it is copied to get 
it from the I10 device to system address space 
and to user address space. 

In a good implementation, these operations 
will be combined to require a minimal number 
of copies. In the Berkeley UNIX, for example, 
when receiving a packet, the data is moved from 
,the I10 device into the chained mbuf structure, 
and is then moved into the user address space in 
a location that is aligned as the user needs it. 
The first copy may be done by a DMA controller 
or by the processor; the second is always done by 
the processor. 

To copy data in memory requires two memo- 
ry cycles, read and write. In other words, the 
bandwidth of the memory must be twice the 
achieved rate of the copy. Checksum computa- 
tion has only one memory operation, since the 
data is being read but not written. (In this analy- 
sis, we ignore the instruction fetch operations to 
implement the checksum, under the assumption 
that they are in a processor cache.) In this imple- 
mentation of TCP, receiving a packet thus 
requires four memory cycles per word, one for 
the input DMA, one for the checksum, and two 
for the copy.1 

A 32-bit memory with a cycle time of 250 ns, 
typical for dynamic RAMS today, would thus 
imply a memory limit of 32 Mb/s. This is a far 
more important limit than the TCP processing 
limits computed above. Our estimates of TCP 
overhead could be off by several factors of two 
before the overhead of TCP would intrude into 
the limitations of the memory. 

A DIRECT MEASURE O F  PROTOCOL OVERHEAD 
In an independent experiment, one of us (Jacob- 
son) directly measured the various costs associat- 
ed with running TCP on a UNIX system. The 
measured system was the Berkeley TCP running 
on a Sun-3/60 workstation, which is based on a 
20 MHz 68020. The measurement technique was 
to use a sophisticated logic analyzer that can be 
controlled by special start, stop, and chaining 
patterns triggered whenever selected addresses 
in the UNIX kernel were executed. This tech- 
nique permits actual measurement of pa th  
lengths in packet processing. A somewhat sub- 
jective division of these times into categories 
permits a loose comparison with the numbers 

To copy da ta  in 
memory requires 

two memory cycles, 
read and wri te.  

In other words, the 
bandwidth of the 
memory must be 

twice the achieved 
rate of  the copy. 

Checksum computation 
has only one 

memory operation, 
since the data i s  
being read bu t  

no t  written. 

The four memory cycles 
per received word are arti- 
facts of the Berkeley 
UNIX we examined, and 
not part of TCP in gener- 
al. An experimental ver- 
sion of Berkeley UNIX 
being developed by one of 
us (Jacobson) uses at 
most three cyclesper 
received word, and one 
cycle per word if the net- 
work interface uses on- 
board buffer memoly 
rather than DMA for 
incoming packets. 

' 
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If the operating 
system and the 

memory overhead 
are the real limits, 
it is tempt ing to  

avoid these by 
. moving the 

processing outboard 
from the processor 

onto a special 
controller. This 

controller could run 
a specialized version 

of an operating 
system and could 

have a special 
high-performance 

memory 
architecture. 

! costs* 

i Per byte: 
, User-system copy 200 ps 

TCP checksum 185ps i Network-memory copy 386 ps I ____ 
i Per packet: 
! Ethernet driver loops 

100 ps TCP + IP + ARP protocols 
I Operating system overhead j 240 ps 

l *Idle h e :  200 ms I 
j . . ,  < . ~  . 

TABLE 1. Measured overheads 

reported above,’ohtained from counting instruc- 
tions. 

The measured overheads were divided into 
two groups:Jhose that scale pcr byte (the user- 
system and network-memory copy and the check- 
sum), and those that are per packet (system 
overhead, protocol processing, interrupts, and so 
on.) See Table 1. 

The per-byte costs were measured for a maxi- 
mum-length Ethernet packet of 1,460 data bytes. 
Thus, for example, the checksum essentially rep- 
resents the.125-nsibyte average memory band- 
width of the Sun-3/60. The very high cost of the 
network-memory copy seems to represent 
specifics of the particular Ethernet controller 
chip used (the LANCE chip), which additionally 
locks up the mcmory bus during the transfer, 
thus stalling the processor. 

The times reported above can he converted 
to instruction counts (the measure used earlier 
in the article) using the fact (recorded by the 
logic analyzer) that this is essentially a 2-MIPS 
machine. Thus, this experiment reports 200 
instructions for TCP and IP, compared to our 
count of about 250. This direct measurement 
involved a TCP with the input header predic- 
t ion algorithm added,  and would thus be 
expected to run faster than our measured ver- 
sion of the code. A detailed analysis of the 200 
instructions seen by the logic analyzer suggests 
that of the total instructions, 70 percent were 
in TCP, and of those, 80 percent were in the 
output  side. Thus,  input header  prediction 
seems a very effective optimization, particular- 
ly since these measurements are the total time 
spent per packet in a real, running UNIX sys- 
tem and include all the mhufs and timer pro- 
cessing that was simplified out o f  the earlier 
study. 

The numbers here support the thesis of the 
last section. The per-byte operations swamp the 
protocol processing costs,,771 ps vcrsus 100 p. 
The protocol processing is also small compared 
to the opcrating system overhead, 240 ps versus 
100 ws, 

SOME DANGEROUS SPECULATIONS 
If the operating system and the memory over- 
head are the real limits, it is tempting to avoid 
these by moving thc processing outboard from 
the processor onto a special controller. This con- 
troller could run a specialized version of an 

____ 
operating system (similar to the one we postulat- 
ed for this analysis) and could have a special 
high-performance memory architecture.  By 
matching the memory to the special needs of 
packet processing, one could achieve high per- 
formance at an acceptable cost. 

For example, since almost all the memory 
cycles are sequential copy o r  checksum opera- 
tions, one could perform these in a way that 
takes advantage of the high-speed sequential 
access methods now available in dynamic memo- 
ry chips. These methods, variously called “page 
mode,” “static column mode,” or “nibble mode,” 
permit cycles of 40,or 50 ns or faster, a great 
speedup over the normal cycle. Alternatively, 
one could use static memory, video RAM, or a 
more pipclined approach to achieve high perfor- 
mance. 

To our knowledge, this has not been attempt- 
ed, The closest example is the VMP Network 
Adaptor Board [Y]. There are products today 
that provide an outboard implementation of 
TCP, but they seem intended morc for providing 
ease of use and portability rather than for high 
performance. 

One might try for both ease of usc and per- 
formance. The problem with this is the buffer 
layer, that un-architected layer~above TCP that 
passes the data to the application. If TCP runs 
in an outboard processor, then the interface to 
the host will be in terms of the buffer. If this is 
high performance, it will probably be complex. 
That is the reality of buffer layers in host-resi- 
dent implementations; splitting it between host 
and outboard processor will almost certainly 
make it worse. 

An alternative conclusion is that even a spe- 
cial outboard processor is not required. By prop- 
er design of network interface hardware, even a 
system like UNIX could be made to run a net- 
work protocol essentially at mcmory speed. The 
following steps seem practical, and could be 
undertaken in the context of UNIX today. 

If the network controller were redesigned to 
reduce the number of interrupts per packet, the 
number of times the driver is executed and the 
actual ovcrhead of interrupts would be reduced. 
If the DMA controller were removed from the 
network controller, and the CPU were used to 
move thc data between device and memory, then 
several improvements would be achievcd. Whilc 
it may sccm wrong to use CPU cycles to move 
data, note that at least one CPU copy will be 
required. By using the CPU to move the data 
from the device, the data can bypass kernel 
buffers altogether and flow directly from device 
to user memory. 

A further per-byte optimization is to note 
that the checksum of the data can be computed 
in that samc copy loop. This requires that the 
effect of the copy bc ignored if t he  data  is 
found to bc corrupted, but this complexity is 
reasonable and does not affect the common 
path. T o  prove this concept, programs were 
carefully writ ten by Jacobson to  copy and 
checksum data  on a 20-MHz 68020. The  
throughput of a checksum loop was 130 
psikbyte, a memory-memory copy loop was 140 
psikbyte, while a combined checksum and copy 
loop was only 200 ps kbyte. 
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Similar experience was obtained with an  
80286 at M.I.T. In NETBLT [lo], a protocol 
designed to optimize throughput, there are two 
checksum fields. One protects the header, the 
other the data. With this change, the header 
checksum is tested first, but the data checksum 
can be put off without further complexity until 
the data is moved to user memory. A version of 
NETBLT (for the IBM AT) was coded to com- 
bine the checksum and copy operations, and the 
resulting version ran considerably faster than the 
one with separate copy and checksum loops. 

The result of combining these features is that 
there is now one memory cycle per byte and the 
data crosses the computer bus once. This is as 
efficient as one could expect a transfer to get. If 
we can assume that the overhead of the operat- 
ing system can be controlled, then with a simple 
network interface we can imagine network per- 
formance approaching the speed of the memory 
of the computer. 

PROTOCOLS IN SILICON 
It has been proposed (e.g., by the designers of 
XTP [ll]) that to achieve reasonable through- 
put, it will be necessary to abandon protocols 
such as TCP and move to more efficient proto- 
cols that can be computed by hardware in spe- 
cial chips. 

The  designers of XTP must confront the  
problems discussed in this article if they are to 
be successful in the quest for a high-speed proto- 
col processor. It is not enough to be better than 
TCP and to  be compatible with the form and 
function of silicon technology. The  protocol 
itself is a small fraction of the problem. The 
XTP protocol must still be interfaced with the 
host operating system and the rest of the envi- 
ronment. 

Our analysis suggests that TCP can do a cred- 
itable job given the right environment. What is 
needed is to move to an efficient network inter- 
face, such as a high-performance outboard pro- 
cessor card with special memory and controllers 
for byte operations such as copy and checksum, 
or, alternatively, to move to a fast but simple 
network controller with fast memory and an effi- 
cient interface to the computer bus, so that the 
CPU can interact with the board efficiently. In 
either case, a fast general-purpose processor can 
still be used to perform the protocol processing, 
using ,a protocol of today's generation. 

If high performance is possible with a pro- 
grammable element using general protocols, it 

is a highly desirable approach. The experience 
of the network community with TCP shows 
why. TCP is 15 years old this year, yet we are 
still tinkering with i t ,  trying t o  get i t  right. 
The  problem is not the da ta  processing, but 
t he  algorithms that  dea l  with the  network 
dynamics. In our analysis, we found that a sig- 
nificant part of the overhead was computing 
control parameters. The particular algorithm 
in our code was just developed in the last year 
[5], 15 years after the first TCP proposal, and 
we can expect further changes with fur ther  
experiences. 

As we move to higher rates, we can expect 
similar experiences. These aspects of the proto- 
col must not be cast in silicon or we risk having 
something that cannot be made to  work well 
which is the primary goal that drives us to sili- 
con. 

Our analysis suggests that putting protocols 
in hardware is not required. While a suitable 
network interface will be needed, we can still use 
standard protocols and programmable con- 
trollers. 
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