
David D. Clark, Van Jacobson, John Romkey, and Howard Salwen

Originally published i n

June 1 9 8 9 - Volume 27, Number 6
IEEE Communications Magazine ,

AUTHOR’S INTRODUCTION

he Internet’s Transmission Control Protocol, or
TCP, has proved remarkably adaptable, working
well across a wide range of hardware and operating
systems, l ink capacit ies, and round t r ip delays. T None the less, there has been a background chorus

of pessimism predicting that TCP is about to run out of
steam, that the next throughput objective will prove its
downfall, or that it cannot be ported to the next smaller
class of processor. These predictions sometimes disguise
the desire to develop an alternative, but they are often
triggered by observed performance limitations in the cur-
rent generation of TCP. However, unless one looks care-
fully, one may mistake the source of these limitations,
and accuse the protocol itself of problems when the actu-
al limit is something else: the memory bandwidth of the
hos t system, a poor implementa t ion , o r just a tun ing
problem.

Innovation proceeds so fast in our field that we a re
often tempted to jump to something new and supposedly
better without understanding what we built the last time.
Computer Science leaves a trail of half-analyzed artifacts
behind in its rush to the future. This is especially true in
performance, when Moore’s law offers us a factor-of-two
improvement if we just take the next 18 months off. But
unless we study what we now have, we are prey to false
myths and superstition about the cause of poor perfor-

mance, which can lead us in fruitless directions when we
innovate.

The project in this article had a very simple goal. We
wanted to try to understand one aspect of TCP perfor-
mance: the actual costs that arise from running the TCP
program on the host processor, t he cost of moving the
bytes in memory, and so on. These costs of necessity
depend on the particular system, but by taking a typical sit-
uation - the Berkeley BSD TCP running on the Unix oper-
ating system on an Intel processor - we could at least
establish a relevant benchmark.

What we showed was that the code necessary to imple-
ment TCP was not the major limitation to overall perfor-
mance. In fact , in this tes ted system (and many o the r
systems subsequently evaluated by others) the throughput
is close to being limited by the memory bandwidth of the
system. We are hitting a fundamental limit, not an artifact
of poor design. Practically, other parts of the OS had larg-
er overheads than TCP.

Since this art icle, we have seen a matura t ion in the
understanding of TCP performance, we have seen better
network “science” - a willingness to study and understand
what has been built - and we have seen a more realistic set
of expectations about performance, both in the research
context and in the deployed systems we have to live with
every day.

94 IEEE Communications Mogozine 50th Annivenory Commemorotive Issue/Moy 2002

hile networks, especially local
area networks, have been getting
faster, perceived throughput at
the application has not always
increased accordingly. Various
performance bottlenecks have
been encountered, each of which W One aspect of has networking to be analyzed often and suspected corrected. of

contributing to low throughput is the transport
layer of the protocol suite. This layer, especially
in connectionless protocols, has considerable
functionality, and is typically executed in soft-
ware by the host processor at the end points of
the network. It is thus a likely source of process-
ing overhead.

While this theory is appealing, a preliminary
examination suggested to us that other aspects
of networking may be a more serious source of
overhead. To test this proposition, a detailed
study was made of a popular transport protocol,
Transmission Control Protocol (TCP) [l]. This
article provides results of that study. Our conclu-
sions are that TCP is in fact not the source of
the overhead often observed in packet process-
ing, and that it could support very high speeds if
properly implemented.

TCP
TCP is the transport protocol from the Internet
protocol suite. In this set of protocols, the func-
tions of detecting and recovering lost or corrupt-
ed packets, flow control, and multiplexing are
performed at the transport level. TCP uses
sequence numbers, cumulative acknowledgment,
windows, and software checksums to implement
these functions.

TCP is used on top of a network-level protocol
called Internet Protocol (IP) [2]. This protocol,
which is a connectionless or datagram packet
delivery protocol, deals with host addressing and
routing, but the latter function is almost totally
the task of the Internet-level packet switch, o r
gateway. IP also provides the ability for packets to
be broken into smaller units (fragmented) on
passing into a network with a smaller maximum
packet size. The IP layer at the receiving end is
responsible for reassembling these fragments. For
a general review of TCP and IP, see [3] or [4].

Under IP is the layer dealing with the specific
network technology being used. This may be a
very simple layer in the case of a local area net-
work, or a rather complex layer for a network
such as X.25. On top of TCP sits one of a num-
ber of application protocols, most commonly for
remote login, file transfer, or mail.

THE ANALYSIS
This study addressed the overhead of running
TCP and IP (since TCP is never run without IP)
and that of the operating system support needed
by them. It did not consider the cost of the driv-
er for some specific network, nor did it consider
the cost of running an application.

The study technique is very simple: we com-
piled a TCP, identified the normal path through
the code, and counted the instructions. However,
more detail’is required to put our work in context.

The TCP we used is the currently distributed
version of TCP for UNIX from Berkeley [5]. By
using a production quality TCP, we believe that
we can avoid the charge that our TCP is not
fully functional.

While we used a production TCP as a starting
point for our analysis, we made significant
changes to the code. To give TCP itself a fair
hearing, we felt it was necessary to remove it
from the UNlX environment, lest we be con-
fused by some unexpected operating system
overhead.

For example, the Berkeley implementation of
UNIX uses a buffering scheme in which data is
stored in a series of chained buffers called mbufs.
We felt that this buffering scheme, as well as the
scheme for managing timers and other system
features, was a characteristic of UNIX rather
than of the TCP, and that it was reasonable to
separate the cost of TCP from the cost of these
support functions. At the same time, we wanted
our evaluation to be realistic. So it was not fair
to altogether ignore the cost of these functions.

Our approach was to take the Berkeley TCP
as a starting point, and modify it to better give a
measure of intripic costs. One of us (Romkey)
removed from the TCP code all references to
UNIX-specific functions such as mbufs, and
replaced them with working but specialized ver-
sions of the same functions. To ensure that the
resulting code was still operational, it was com-
piled and executed. Running the TCP in two
UNIX address spaces and passing packets by an
interprocess communication path, the TCP was
made to open and close connections and pass
data. While we did not test the TCP against
other implementations, we can be reasonably
certain that the TCP that resulted from our test
was essentially a correctly implemented TCP.

The compiler used for this experiment gener-
ated reasonably efficient code for the Intel
80386. Other experiments we have performed
tend to suggest that for this sort of application
the number of instructions is very similar for an
80386, a Motorola 68020, or even an RISC chip
such as the SPARC.

FINDING THE COMMON PATH
One observation central to the efficient

implementation of TCP is that while there are
many paths through the code, there is only one
common one. While opening or closing the con-
nection, or after errors, special code will be exe-
cuted. But none of this code is required for the
normal case. The normal case is data transfer,
while the TCP connection is established. In this
state, data flows in one direction, and acknowl-
edgment and window information flows in the
other.

In writing a TCP, it is important to optimize
this path. In studying the TCP, it was necessary
to find and follow it in the code. Since the Berke-
ley TCP did not separate this path from all the
other cases, we were not sure if it was being exe-
cuted as efficiently as possible. For this reason,
and to permit a more direct analysis, we imple-
mented a special “fast path” TCP. When a pack-
e t was received, some simple tests were
performed to see whether the connection was in

TCP is used on top
of a network-level

protocol called
Internet Protocol

(IP). This protocol,
which is a

connectionless or
datagram packet
delivery protocol,

deals wi th host
addressing and
routing, but the
lat ter function is

almost total ly the
task of the Internet-
level packet switch,

or gateway.

IEEE Communications Magazine 50th Anniversary Commemorative Issue/May 2002 45

Data packet flow
b

() = Instructions i
E FIGURi 1. Analysis terminology

an established state, the packet had no special
control flags on, and the sequence number was
expected. If so, control was transferred to the
fast path. The version of the TCP that we com-
piled and tested had this fast path, and it was
this fast path that we audited.

There are actually two common paths through
the TCP, the end sending data and the end
receiving it. In general, TCP permits both ends
to,do both at once, although in the real world it
happens only in some limited.cases. But in any
bulk data example, where throughput is an issue,
data almost always flows in only one direction.
One end, the sending end, puts data in its outgo-
ing packets. When it receives a packet, it finds
only control information: acknowledgments and
windows.

The other receiving end finds data i n its
incoming packets and sends back control infor-
mation. In this article, we will use the terms
sender and receiver to describe the direction of
data flow. Both ends really do receive packets,
but only one end tends to receive data. In Fig. 1,
we illustrate how our terms describe the various
steps of the packet processing.

A FIRST CASE STUDY: INPUT PROCESSING
A common belief about TCP is that the most
complex, and thus most costly, part is the pack-
et-receiving operation. In fact as we will discuss,
this belief seems false. When receiving a packet,
the program must proceed through the packet,
testing each field for errors and detcrmining the
proper action to take. In contrast, when sending
a packet, the program knows exactly what actions
are intended and essentially has to format the
packet and start the transmission.

A preliminary investigation tended to support
this model, so for our first detailed analysis, we
studied the program that receives and processes
a packet.

There are three general stages to the TCP
processing. In the first, a search is made to find
the local state information (called the Tiansmis-
sion Control Block,.or TCB) for this TCP con-
nection. In the second, the TCP checksum is
verified. This requires computing a simple func-
tion of all the bytes in the packet. In the third

stage, the packet header is processed. (These
steps can he reordered for greater efficiency, as
we will discuss later.)

We chose not to study the first two stages.
The checksum cost depends strongly on the raw
speed of the environment and the detailed cod-
ing of the computation. The lookup function
similarly depends on the details of the data
structure, the assumed number of connections,
and the potential for special hardware and algo-
rithms. We will return to these two operations in
a later section. but in the oresent analvsis. thev

I , ,

are omitted.
The follosine analvsis thus covers the TCP I ,

processing from the point where the packet has
been checksummed and the TCB has been
found. It covers the processing of all the header
data and the resulting actions.

The packet input processing code has rather
different paths for the sender and receiver of
data. The overall numbers are the following:

Sender of data: 191 to 213 instructions
Receiver of data: 186 instructions

A more detailed breakdown nrovides further
insight.

Both sides contain a common oath of 154

96 IEEE tommuniiotlonr Mogoiine 50h A n n i v e w Commemomtlve IisuejMoy 2002

TCP OUTPUT PROCESSING
We subjected the output side of TCP to an anal-
ysis that was somewhat less detailed than that of
the input side. We did not program a fast path,
and we did not attempt to separate the paths for
data sending and receiving. Thus, we have a sin-
gle number that is a combination of the two
paths and which (by inspection) could be signifi-
cantly improved by an optimization of the com-
mon path.

We found 235 instructions to send a packet in
TCP. This number provides a rough measure of
the output cost, but it is dangerous to compare it
closely with the input processing cost. Neither
the output side nor the input side had been care-
fully tuned, and both could be reduced consider-
ably. Only if both paths had received equivalent
attention would a direct comparison be justified.
Our subjective conclusion in looking at the two
halves of the TCP is that our starting assumption
(the receiving side is more complex than the
sending side) is probably wrong. In fact, TCP
puts most of its complexity in the sending end of
the connection. This complexity is not a part of
packet sending, but a part of receiving the con-
trol information about that data in an incoming
acknowledgment packet.

THE COST OF IP
In the normal case, IP performs very few

functions. Upon inputting of a packet, it checks
the header for correct form, extracts the proto-
col number, and calls'the TCP processing func-
tion. The executed path is almost always the
same. Upon outputting, the operation is even
more simple.

The instruction counts for IP were as follows:
Packet receipt: 57 instructions
Packet sending: 61 instructions

AN OPTIMIZATION EXAMPLE: HEADER PREDICTION

The actual sending of a packet is less complex
than the receiving of one. There is no question
of testing for malformed packets, or of looking
up a TCB. The TCB is known, as is the desired
action.

One example of a simple operation is the
actual generation of the outgoing packet header.
IP places a fixed-size, 20-byte header on the
front of every IP packet, plus a variable amount
of options. Most IP packets carry no options. Of
the 20-byte header, 14 of the bytes wiil be the
same for all IP packets sent by a particular TCP
connection. The IP length, ID, and checksum
fields (six bytes total) will probably be different
for each packet. Also, if a packet carries any
options, all packets for that TCP connection will
be likely to carry the same options.

The Berkeley implementation of UNIX
makes some use of this observation, associating
with each connection a template of the IP and
TCP headers with a few of the fixed fields filled
in. To get better performance, we designed an
IP layer that created a template with all the con-
stant fields filled in. When TCP wished to send a
packet on that connection, it would call IP and

pass it the template and the length of the packet.
Then IP would block-copy the template into the
space for the IP header, fill in the length field,
fill in the unique ID field, and calculate the IP
header checksum.

This idea can also be used with TCP, as was
demonstrated in an earlier, very simple TCP
implemented by some of us at MIT [6]. In that
TCP, which was designed to support remote
login, the entire state of the output side, includ-
ing the unsent data, was stored as a preformat-
ted output packet. This reduced the cost of
sending a packet to a few lines of code.

A more sophisticated example of header pre-
diction involves applying the idea to the input
side. In the most recent version of TCP for
Berkeley UNIX, one of us (Jacobson) and Mike
Karels have added code to precompute what Val:
ues should be found in the next incoming packet
header for the connection. If the packets arrive
in order, a few simple comparisons suffice to
complete header processing. While this version
of TCP was not available in time to permit us to
compile and count the instructions, a superficial
examination suggests that it should substantially
reduce the overhead of processing compared to
the version that we reviewed.

S u P P o RT F u N CT I o N s
THE BUFFER LAYER

The most complex of the support functions is
the layer that manages the buffers which hold
the data at the interface to the layer above. Our
buffer layer was designed to match high-through-
put bulk data transfer. It supports an allocate-
and-free function and a simple get-and-put
interface, with one additional feature to support
data sent but not yet acknowledged. All the
bookkeeping about out-of-order packets was
performed by TCP itself.

The buffer layer added the following costs to
the processing of a packet:

Sending a data packet: 40 instructions
Receiving a data packet: 35 instructions
Receiving an acknowledgment (may free a
buffer): 30 instructions
It might be argued that our buffer layer is too

simple. We would accept that argument, but are
not too concerned about it. All transport proto-
cols must have a buffer layer. In comparing two
transport protocols, it is reasonable to assume
(to first order) that if they have equivalent ser-
vice goals, then they will have equivalent buffer
layers.

A buffer layer can easily grow in complexity
to swamp the protocol itself. The reason for this
is that the buffer layer is the part of the code in
which the demand for varieties of service has a
strong effect. For example, some implementa-
tions of TCP attempt to provide good service to
application clients who want to deal with data
one byte at a time; as well as others who want to
deal in large blocks. To serve both types of
clients requires a buffer layer complex enough to
fold both of these models together. In an infor-
mal study, done by one of us (Clark), of another
transport protocol, an extreme version of this
problem was uncovered: of 68 pages of code
written in C, which seemed to be the transport

The most complex
of the support

functions i s the layer
tha t manages the
buffers which hold

the data a t the
interface to the

layer above. Our
buffer layer was

designed to match
high-throughput bulk

data transfer.

IEEECommunicotions Magazine 50th Anniversoiy Commemorative Issue/Moy 2002 97

Having an end-to-end

checksum tha t i s
computed after the

packet i s actually in
main memory

provides a level of
protection tha t is

very valuable.
However, computing
this checksum using

the central processor
rather than some

outboard chip may
be a considerable

burden on the
protocol.

protocol, more than 60 were found to be the
buffer layer and interfaces to other protocol lay-
ers, and only about six were the protocol.

The problem of the buffer layer is made
worse by the fact that the protocol specifiers do
not admit that such a layer exists. It is not a part
of the I S 0 reference model, but is left as an
exercise for the implementor. This is reasonable,
within limits, since the design of the buffer layer
has much to do with the particular operating sys-
tem. (This, in fact, contributed to the great sim-
plicity of our buffer layer; since there was no
operating system to speak of, we were free to
structure things as needed, with the right degree
of generality and functionality.)

However, some degree of guidance to the
implementor is necessary and the specifiers of a
protocol suite would be well served to give some
thought to the role of buffering in their architec-
ture.

TIMERS AND SCHEDULERS
In TCP, almost every packet is coupled t o a
timer. On sending data, a retransmit timer is set.
On receipt of an acknowledgment, this timer is
cleared. On receiving data, a timer may be set to
permit dallying before sending the acknowledg-
ment. On sending the acknowledgment, if that
timer has not expired, it must be cleared.

The overhead of managing these timers can
sometimes be a great burden. Some operating
systems’ designers did not think that timers‘
would be used in this demanding a context, and
made no effort to control their costs.

In this implementation, we used a specialized
timer package similar to the one described by
Varghese [7]. I t provides very low-cost timer
operations. In our version the costs were:

Set a timer: 35 instructions
Clear a timer: 17 instructions
Reset a timer (clear and set together): 41
instructions

CHECKSUMS AND TCBS: THE MISSING STEPS
In the discussion of TCP input processing above,
we intentionally omitted the costs for computing
the TCP checksum and for looking up the TCB.
We now consider each of these costs.

The TCP checksum is a point of long-stand-
ing contention among protocol designers. Hav-
ing an end-to-end checksum that is computed
after the packet is actually in main memory pro-
vides a level of protection that is very valuable
[SI. However, computing this checksum using the
central processor rather than some outboard
chip may be a considerable burden on the proto-
col. In this article, we do not want to take sides
on this matter. We only observe that “you get
what you pay for.” A protocol designer might try
to make the cost optional, and should certainly
design the checksum to be as efficient as possi-
ble.

There are a number of processing overheads
associated with processing the bytes of the pack-
et rather than the header fields. The checksum
computation is one of these, but there are oth-
ers. In a later section, we consider all the costs
of processing the bytes.

Looking up the TCB is also a cost somewhat

unrelated to the details of TCP. That is, any
transport protocol must keep state information
for each connection, and must use a search func-
tion to find this for an incoming packet. The
only variation is the number of bits that must be
matched to find the state (TCP uses 96, which
may not be minimal), and the number of con-
nections that are assumed to be open.

Using the principle of the common path and
caching, one can provide algorithms that are
very cheap. The most simple algorithm is to
assume that the next packet is from the same
connection as the last packet. To check this, one
need only pick up a pointer to the TCB saved
from last time, extract from the packet and com-
pare the correct 96 bits, and return the pointer.
This takes very few instructions. One of us
(Jacobson) added such a single-entry TCB cache
to his TCP on UNIX, and measured the success
rate. Obviously, for any bulk data test, where the
TCP is effectively dedicated to a single connec-
tion, the success rate of this cache approaches
100 percent. However, for a TCP in general
operation, the success rate (often called the “hit
ratio”) was also very high. For a workstation in
general use (opening 5,715 connections over 38
days and receiving 353,238 packets), the single-
entry cache matched the incoming packet 93.2
percent of the time. For a mail server, which
might be expected to have a much more diverse
set of connections, the measured ratio was 89.8
percent (over two days, 2,044 conuections, and
121,676 incoming packets).

If this optimization fails too often to be use-
ful, the next step is to hash the 96 bits into a
smaller value, perhaps an 8-bit field, and use this
to index into an array of linked lists of TCBs,
with the most recently used TCB sorted first. If
the needed TCB is indeed first on the list select-
ed by the hash function, the cost is again very
low. A reasonable estimate is 25 instructions.
We will use this higher estimate in the analysis
to follow.

SOME SPEED PREDICTIONS
Adding all these costs together, we see that the
overhead of receiving a packet with control
information in it (which is the most costly ver-
sion of the processing path) is about 335 instruc-
tions. This includes the TCP-level and IP-level
processing, our crude estimate of the cost of
finding the TCB and the buffer layer, and reset-
ting a timer. Adding up the other versions of the
sending and receiving paths yields instruction
counts of the same magnitude.

With only minor optimization, an estimate of
300 instructions could be justified as a round
number to use as a basis for some further analy-
sis. If the processing overhead were the only bot-
tleneck, how fast could a stream of TCP packets
forward data?

Obviously, we must assume some target pro-
cessor to estimate processing time. While these
estimates were made for an Intel 80386, we
believe the obvious processor is a 32-bit RISC
chip, such as a SPARC chip o r a Motorola
88000. A conservative execution rate for such a
machine might be 10 MIPS, since chips of this
sort can be expected to have a clock rate of

90
’

IEEE Communications Magazine 50th Anniversary Commemorative Issue/May 2002

twice that or more, and execute most instruc-
tions in one clock cycle. (The actual rate clearly
requires a more detailed analysis-it depends on
the number of data references, the data fetch
architecture of the chip, the supporting memory
architecture, and so on. For this article, which is
only making a very rough estimate, we believe
that a working number of 10 MIPS is reason-
able.)

In fairness, the estimate of 300 instructions
should be adjusted for the change from the
80386 to an RISC instruction set. However,
b.ased on another study of packet processing
code, we found little expansion of the code when
converting to an RISC chip. The operations
required for packet processing are so simple that
no matter what processor is being used, the
instruction set actually utilized is an RISC set.

A conservative adjustment would be to
assume that 300 instructions for a 80386 would
be 400 instructions for an RISC processor.

At 10 MIPS, a processor can execute 400
instructions in 40 ps, or 25,000 packetsls. These
processing costs permit rather high data rates.

If we assume a packet size of 4,000 bytes
(which would fit in an FDDI frame, for exam-
ple), then 25,000 packetsls provides 800 Mb/s.
For TCP, this number must be reduced by tak-
ing into account the overhead of the acknowl-
edgment packet. The Berkeley UNIX sends one
acknowledgment for every other data packet
during bulk data, so we can assume that only
two out of the three packets actually carry data.
This yields a throughput of 530 Mb/s.

Figuring another way, if we assume an FDDI
network with 100 Mb/s bandwidth, how small
can the packets get before the processing per
packet limits the throughput? The answer is 500
bytes.

These numbers are very encouraging. They
suggest that it is not necessary to revise the pro-
tocols to utilize a network such as FDDI. It is
only necessary to implement them properly.

W H Y ARE PROTOCOLS SLOW?
The numbers computed above may seem hard to
believe. While the individual instruction counts
may seem reasonable, the overall conclusion is
not consistent with observed performance today.

We believe that the proper conclusion is that
protocol processing is not the real source of the
processing overhead. There are several others
that are more important. They are just harder
to find, and the TCP is easier to blame. The
first overhead is the operating system. As we
discussed above, packet processing requires con-
siderable support from the system. It is neces-
sary to take an interrupt , allocate a packet
buffer, free a packet buffer, restart the 110
device, wake up a process (or two or three), and
reset a timer. In a particular implementation,
there may be other costs that we did not identi-
fy in'this study.

In a typical operating system, these functions
may turn out to be very expensive. Unless they
were designed for exactly this function, they may
not match the performance requirements at all.

A common example is the timer package.
Some timer packages are designed under the

assumption that the common operations are set-
ting a timer and having a timer expire. These
operations are made less costly at the expense of
the operation of unsetting or clearing the timer.
.But that is what happens on every packet.

It may seem as if these functions, even if not
optimized, are small compared to TCP. This is
true only if TCP is big. But, as we discovered
above, TCP is small. A typical path through TCP
is 200 instructions; a timer package could cost
that much if not carefully designed.

The other major overhead in packet process-
ing is performing operations that touch the
bytes. The example associated with the transport
protocol is computing the checksum. The more
important one is moving the data in memory.

Data is moved in memory for two reasons.
First, it is moved to separate the data from the
header and get the data into the alignment need-
ed by the application. Second, it is copied to get
it from the I10 device to system address space
and to user address space.

In a good implementation, these operations
will be combined to require a minimal number
of copies. In the Berkeley UNIX, for example,
when receiving a packet, the data is moved from
,the I10 device into the chained mbuf structure,
and is then moved into the user address space in
a location that is aligned as the user needs it.
The first copy may be done by a DMA controller
or by the processor; the second is always done by
the processor.

To copy data in memory requires two memo-
ry cycles, read and write. In other words, the
bandwidth of the memory must be twice the
achieved rate of the copy. Checksum computa-
tion has only one memory operation, since the
data is being read but not written. (In this analy-
sis, we ignore the instruction fetch operations to
implement the checksum, under the assumption
that they are in a processor cache.) In this imple-
mentation of TCP, receiving a packet thus
requires four memory cycles per word, one for
the input DMA, one for the checksum, and two
for the copy.1

A 32-bit memory with a cycle time of 250 ns,
typical for dynamic RAMS today, would thus
imply a memory limit of 32 Mb/s. This is a far
more important limit than the TCP processing
limits computed above. Our estimates of TCP
overhead could be off by several factors of two
before the overhead of TCP would intrude into
the limitations of the memory.

A DIRECT MEASURE O F PROTOCOL OVERHEAD
In an independent experiment, one of us (Jacob-
son) directly measured the various costs associat-
ed with running TCP on a UNIX system. The
measured system was the Berkeley TCP running
on a Sun-3/60 workstation, which is based on a
20 MHz 68020. The measurement technique was
to use a sophisticated logic analyzer that can be
controlled by special start, stop, and chaining
patterns triggered whenever selected addresses
in the UNIX kernel were executed. This tech-
nique permits actual measurement of pa th
lengths in packet processing. A somewhat sub-
jective division of these times into categories
permits a loose comparison with the numbers

To copy da ta in
memory requires

two memory cycles,
read and wri te.

In other words, the
bandwidth of the
memory must be

twice the achieved
rate of the copy.

Checksum computation
has only one

memory operation,
since the data i s
being read bu t

no t written.

The four memory cycles
per received word are arti-
facts of the Berkeley
UNIX we examined, and
not part of TCP in gener-
al. An experimental ver-
sion of Berkeley UNIX
being developed by one of
us (Jacobson) uses at
most three cyclesper
received word, and one
cycle per word if the net-
work interface uses on-
board buffer memoly
rather than DMA for
incoming packets.

'

IEEE Communications Magazine 50th Anniversary Commemorative Issue/May 2002 9 9

If the operating
system and the

memory overhead
are the real limits,
it is tempt ing to

avoid these by
. moving the

processing outboard
from the processor

onto a special
controller. This

controller could run
a specialized version

of an operating
system and could

have a special
high-performance

memory
architecture.

! costs*

i Per byte:
, User-system copy 200 ps

TCP checksum 185ps i Network-memory copy 386 ps I ____
i Per packet:
! Ethernet driver loops

100 ps TCP + IP + ARP protocols
I Operating system overhead j 240 ps

l *Idle h e : 200 ms I
j . . , < . ~ .

TABLE 1. Measured overheads

reported above,’ohtained from counting instruc-
tions.

The measured overheads were divided into
two groups:Jhose that scale pcr byte (the user-
system and network-memory copy and the check-
sum), and those that are per packet (system
overhead, protocol processing, interrupts, and so
on.) See Table 1.

The per-byte costs were measured for a maxi-
mum-length Ethernet packet of 1,460 data bytes.
Thus, for example, the checksum essentially rep-
resents the.125-nsibyte average memory band-
width of the Sun-3/60. The very high cost of the
network-memory copy seems to represent
specifics of the particular Ethernet controller
chip used (the LANCE chip), which additionally
locks up the mcmory bus during the transfer,
thus stalling the processor.

The times reported above can he converted
to instruction counts (the measure used earlier
in the article) using the fact (recorded by the
logic analyzer) that this is essentially a 2-MIPS
machine. Thus, this experiment reports 200
instructions for TCP and IP, compared to our
count of about 250. This direct measurement
involved a TCP with the input header predic-
t ion algorithm added, and would thus be
expected to run faster than our measured ver-
sion of the code. A detailed analysis of the 200
instructions seen by the logic analyzer suggests
that of the total instructions, 70 percent were
in TCP, and of those, 80 percent were in the
output side. Thus, input header prediction
seems a very effective optimization, particular-
ly since these measurements are the total time
spent per packet in a real, running UNIX sys-
tem and include all the mhufs and timer pro-
cessing that was simplified out o f the earlier
study.

The numbers here support the thesis of the
last section. The per-byte operations swamp the
protocol processing costs,,771 ps vcrsus 100 p.
The protocol processing is also small compared
to the opcrating system overhead, 240 ps versus
100 ws,

SOME DANGEROUS SPECULATIONS
If the operating system and the memory over-
head are the real limits, it is tempting to avoid
these by moving thc processing outboard from
the processor onto a special controller. This con-
troller could run a specialized version of an

operating system (similar to the one we postulat-
ed for this analysis) and could have a special
high-performance memory architecture. By
matching the memory to the special needs of
packet processing, one could achieve high per-
formance at an acceptable cost.

For example, since almost all the memory
cycles are sequential copy o r checksum opera-
tions, one could perform these in a way that
takes advantage of the high-speed sequential
access methods now available in dynamic memo-
ry chips. These methods, variously called “page
mode,” “static column mode,” or “nibble mode,”
permit cycles of 40,or 50 ns or faster, a great
speedup over the normal cycle. Alternatively,
one could use static memory, video RAM, or a
more pipclined approach to achieve high perfor-
mance.

To our knowledge, this has not been attempt-
ed, The closest example is the VMP Network
Adaptor Board [Y]. There are products today
that provide an outboard implementation of
TCP, but they seem intended morc for providing
ease of use and portability rather than for high
performance.

One might try for both ease of usc and per-
formance. The problem with this is the buffer
layer, that un-architected layer~above TCP that
passes the data to the application. If TCP runs
in an outboard processor, then the interface to
the host will be in terms of the buffer. If this is
high performance, it will probably be complex.
That is the reality of buffer layers in host-resi-
dent implementations; splitting it between host
and outboard processor will almost certainly
make it worse.

An alternative conclusion is that even a spe-
cial outboard processor is not required. By prop-
er design of network interface hardware, even a
system like UNIX could be made to run a net-
work protocol essentially at mcmory speed. The
following steps seem practical, and could be
undertaken in the context of UNIX today.

If the network controller were redesigned to
reduce the number of interrupts per packet, the
number of times the driver is executed and the
actual ovcrhead of interrupts would be reduced.
If the DMA controller were removed from the
network controller, and the CPU were used to
move thc data between device and memory, then
several improvements would be achievcd. Whilc
it may sccm wrong to use CPU cycles to move
data, note that at least one CPU copy will be
required. By using the CPU to move the data
from the device, the data can bypass kernel
buffers altogether and flow directly from device
to user memory.

A further per-byte optimization is to note
that the checksum of the data can be computed
in that samc copy loop. This requires that the
effect of the copy bc ignored if t he data is
found to bc corrupted, but this complexity is
reasonable and does not affect the common
path. T o prove this concept, programs were
carefully writ ten by Jacobson to copy and
checksum data on a 20-MHz 68020. The
throughput of a checksum loop was 130
psikbyte, a memory-memory copy loop was 140
psikbyte, while a combined checksum and copy
loop was only 200 ps kbyte.

100 IEEE Communiiatlonr Mogozine Soh Anoivemy Commemoiotive lssue/Moy 2002

Similar experience was obtained with an
80286 at M.I.T. In NETBLT [lo], a protocol
designed to optimize throughput, there are two
checksum fields. One protects the header, the
other the data. With this change, the header
checksum is tested first, but the data checksum
can be put off without further complexity until
the data is moved to user memory. A version of
NETBLT (for the IBM AT) was coded to com-
bine the checksum and copy operations, and the
resulting version ran considerably faster than the
one with separate copy and checksum loops.

The result of combining these features is that
there is now one memory cycle per byte and the
data crosses the computer bus once. This is as
efficient as one could expect a transfer to get. If
we can assume that the overhead of the operat-
ing system can be controlled, then with a simple
network interface we can imagine network per-
formance approaching the speed of the memory
of the computer.

PROTOCOLS IN SILICON
It has been proposed (e.g., by the designers of
XTP [ll]) that to achieve reasonable through-
put, it will be necessary to abandon protocols
such as TCP and move to more efficient proto-
cols that can be computed by hardware in spe-
cial chips.

The designers of XTP must confront the
problems discussed in this article if they are to
be successful in the quest for a high-speed proto-
col processor. It is not enough to be better than
TCP and to be compatible with the form and
function of silicon technology. The protocol
itself is a small fraction of the problem. The
XTP protocol must still be interfaced with the
host operating system and the rest of the envi-
ronment.

Our analysis suggests that TCP can do a cred-
itable job given the right environment. What is
needed is to move to an efficient network inter-
face, such as a high-performance outboard pro-
cessor card with special memory and controllers
for byte operations such as copy and checksum,
or, alternatively, to move to a fast but simple
network controller with fast memory and an effi-
cient interface to the computer bus, so that the
CPU can interact with the board efficiently. In
either case, a fast general-purpose processor can
still be used to perform the protocol processing,
using ,a protocol of today's generation.

If high performance is possible with a pro-
grammable element using general protocols, it

is a highly desirable approach. The experience
of the network community with TCP shows
why. TCP is 15 years old this year, yet we are
still tinkering with i t , trying t o get i t right.
The problem is not the da ta processing, but
t he algorithms that dea l with the network
dynamics. In our analysis, we found that a sig-
nificant part of the overhead was computing
control parameters. The particular algorithm
in our code was just developed in the last year
[5], 15 years after the first TCP proposal, and
we can expect further changes with fur ther
experiences.

As we move to higher rates, we can expect
similar experiences. These aspects of the proto-
col must not be cast in silicon or we risk having
something that cannot be made to work well
which is the primary goal that drives us to sili-
con.

Our analysis suggests that putting protocols
in hardware is not required. While a suitable
network interface will be needed, we can still use
standard protocols and programmable con-
trollers.

REFERENCES
[I] information Sciences Institute, Transmission Control

Protocol NIC-RFC 793, DDN Protocol Handbook, vol. 2,
Sept. 1981, pp. 2.179-2.198.

[2] Information Sciences institute, DARPA Internet Program
Protocol Specification NIC-RFC 791, DDN Protocol
Handbook, vol.2, Sept. 1981, pp. 2.99-2.149.

[3] J. B. Postel, C. A. Sunshine, and D. Cohen, "The ARPA
Internet Protocol," Computer Networks, vol. 5, no. 4,
July, 1981, pp. 261-71.

141 J. B. Postel, "internetwork Protocol Approaches," /E€€
Transactions on Communications, vol. Com-28. no. 4,
Apr. 1980, pp. 605-1 1.

[5] V. Jacobson, "Congestion Avoidance and Control," Sig-
Comm '88 Symp., ACM. Aug. 1988.

161 J . H. Saltzer et a/., "The Desktop Computer as a Net-
work Participant," /€€€ ISAC, vol. SAC-3, no. 3, May
1985, pp. 468-78.

[7] G. Varghese and T. Lauck, "Hashed and Hierarchical
Timing Wheels: Data Structures for the Efficient Imple-
mentation of a Timer Facility," Proc. 17th ACM Symp.
Operating Systems Principles, ACM Operating Systems
Review, Austin, TX, Nov. 1987.

[81 J . H. Saltzer, D. P. Reed, and D. D. Clark, "End-to-End
Arguments in System Design," ACM Trans. Comp. Sys.,

. vol. 2, no. 4, Nov. 1984. pp. 277-88.
[9] H. Kanakia and D. Cheriton, "The VMP Network Adap-

tor Board (NAB): High-Performance Network Communi-
cation for Multiprocessors," SigComm '88 Symp., ACM,

[I O] D. D. Clark, M . Lambert, and L. Zhang, "NETBLT: A
High Throughput Transport Protocol," Frontiers in Com-
puter Communications Technology: Proc. ACM-Sig-
Comm '87, Association for Computing Machinery,
Stowe, VT, Aug. 1987, pp. 353-59.

[I 11 G. Chesson et a/., "XTP Protocol Definition," Technical
Report Revision 3.0, Silicon Graphics, Inc., Jan. 1988.

AUg. 1988, pp. 175-87.

TCP is 1 5 years old

this year, ye t we are
still t inker ing w i t h

it, t ry ing t o get it
right. The problem

is n o t the data
processing, bu t the

algorithms tha t deal
w i th the network
dynamics. In $our

analysis, we found
tha t a significant

part of the overhead
was computing

control parameters.

IEEE Communications Magazine 50th Anniversary Commemorative Issue/Moy 2002 101

