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PROXY SUPPORT FOR
STREAMING ON THE INTERNET

INTRODUCTION

Over the last few years, the area of peer-to-peer
overlay networks has attracted considerable
attention. The notion of end users collaborating
to support a richer set of network services with
no network infrastructure support has been quite
well received. This is not surprising given the
understandably slow rate of deployment for any
service that requires changes to the Internet
infrastructure.

One interesting communication paradigm
that has in particular come into the limelight
with the advent of peer-to-peer networking is
multipoint-to-point communication. A single
“client” (requesting peer) can use multiple
“servers” (supplying peers) to access the desired
content, and gain from the resulting paralleliza-

tion of the access. Multipoint-to-point communi-
cation has become particularly relevant in the
context of peer-to-peer networks because of the
following reasons:

•Since peers act as content servers, it is
more likely that for any given request there are
multiple sources available to serve the same
content. Moreover, the availability of the con-
tent increases as its popularity increases. This is
very different from the conventional client-serv-
er model where the hosts that serve the content
are limited to those allocated by the content
provider.

•In a peer-to-peer network, the uplink (out-
bound) from a peer server is not guaranteed to
be sufficiently provisioned. Consider, for exam-
ple, a peer using an asymmetric digital sub-
scriber line (ADSL) connection for network
access. Although the downstream bandwidth
can be on the order of a few megabits per sec-
ond, the upstream bandwidth is typically an
order of magnitude smaller. Hence, it is very
likely that when a peer client accesses the con-
tent, the bottleneck really lies at the peer serv-
er end.

Unsurprisingly, several peer-to-peer applica-
tions such as Kazaa have started using multiple
connections to replicated sources for expediting
data transfer. These applications, however, are
limited to non-real-time downloads and cannot
be used for real-time streaming, despite the fact
that the most popular type of files shared in
peer-to-peer networks is multimedia content
such as music and video [1]. In this work we
focus on the problem of enabling real-time video
streaming over peer-to-peer networks using mul-
tipoint-to-point communication. The goal is to
allow users to start watching the video after a
short preroll delay (a few seconds), without hav-
ing to wait (for potentially hours) until the con-
tent is completely downloaded on the local disk.
The key challenges that render related work
ineffective in supporting multipoint-to-point
communication for real-time video streaming
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ABSTRACT

Existing transport layer protocols such as TCP
and UDP are designed specifically for point-to-
point communication. The increased popularity
of peer-to-peer networking has brought changes
in the Internet that provided users with poten-
tially multiple replicated sources for content
retrieval. However, applications that leverage
such parallelism have thus far been limited to
non-real-time file downloads. In this article we
consider the problem of multipoint-to-point
video streaming over peer-to-peer networks. We
present a transport layer protocol called R2CP
that effectively enables real-time multipoint-to-
point video streaming. R2CP is a receiver-driven
multistate transport protocol. It requires no
coordination between multiple sources, accom-
modates flexible application layer reliability
semantics, uses TCP-friendly congestion control,
and delivers to the video stream the aggregate
of the bandwidths available on the individual
paths. Simulation results show great perfor-
mance benefits using R2CP in peer-to-peer net-
works.
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over peer-to-peer networks stem from the unique
requirements of the target application and envi-
ronment:

Video streaming: While it is possible for
solutions targeting non-real-time applications
to fetch different pieces of the accessed con-
tent independently and then perform offline
resequencing on the disk [2, 3], such solutions
cannot be used for real-time video streaming
where ordering of content (in-sequence deliv-
ery) is necessary. When a finite resequencing
buffer is used in such approaches, the very fact
that individual paths carry dependent informa-
tion that needs to be delivered in a globally
sequenced manner can result in head-of-line
blocking and buffer overflow, causing the
aggregate throughput to be throttled by the
slowest path [4].

Peer-to-peer networks: While several
approaches proposed for real-time streaming in
content delivery networks leverage the existence
of multiple content servers [5, 6], such solutions
cannot be used for peer-to-peer networks due to
the “non-server-like” behaviors of peers acting
as sources, such as heterogeneous capacity and
transient availability. Moreover, many peers may
not be encountered more than once; hence, any
approach that relies on the design of optimal
server placement or content distribution is not
applicable to peer-to-peer networks.

In this article we present a transport layer
protocol called Radial Reception Control Proto-
col (R2CP) that enables effective multipoint-to-
point video streaming over peer-to-peer
networks.1 Briefly, R2CP is a purely receiver-
driven multistate transport protocol. It requires
no explicit coordination between multiple
sources, consumes minimal computing resources
at the sources, operates in a TCP-friendly fash-
ion for individual paths, seamlessly accommo-
dates flexible application layer reliability
semantics, and effectively delivers the aggregate
of the bandwidths available on individual paths.
While the cornerstones of the R2CP design are
in fact also applicable to multipoint-to-point
non-real-time content download, we restrict the
focus of all our discussions in this article to real-

time video streaming. We show through packet-
level simulations that R2CP achieves effective
multipoint-to-point real-time video streaming.

The rest of the article is organized as follows.
We first elaborate on the problem and the key
research challenges in supporting multipoint-to-
point video streaming over peer-to-peer net-
works. We then describe the R2CP protocol,
including its software architecture and protocol
operations. Finally, we present performance
results for R2CP, and conclude the article.

THE PROBLEM
In this section we elaborate on the problem con-
sidered in this article. We first discuss the goal
and the key challenges. We then show that exist-
ing approaches cannot effectively address these
challenges, thus motivating a new approach to
tackle the problem.

GOAL
The use of peer-to-peer applications has so far
been limited to non-real-time file downloads.
Any file transferred using such applications
needs to be completely downloaded on the local
disk before it can be used. However, the most
popular type of files shared in peer-to-peer net-
works is multimedia content such as music or
video [1]. If a user with a 1.5 Mb/s ADSL con-
nection is to download a 90 min VCD movie
encoded at 1.38 Mb/s (standard rate for 352 ×
240 pixel resolution VCD movies) in such a use-
after-download mode, it will take the user at least
83 min before he/she can start watching the
movie. Such a long waiting delay can be avoided
if the user is provided with the ability to stream
video while downloading. In this article we aim to
enable such real-time video streaming applica-
tions for users in peer-to-peer networks.

Unlike in conventional streaming applications
where the servers are provided through the con-
tent delivery networks, in peer-to-peer streaming
the host supplying the video clip typically does
not fit the high-bandwidth low-latency profile of
a server [1]. For peers with an ADSL connec-
tion, for example, the uplink data rate is limited
to less than 512 kb/s (or 256 kb/s for typical
cable modem users). As mentioned earlier, if a
user is to stream a VCD movie, the average
streaming rate should be at least 1.38 Mb/s —
about three times the maximum outbound rate
from any supplying peer using an ADSL connec-
tion. Conventional approaches that open a single
unicast connection between the streaming server
and the client thus will fail to provide users in
peer-to-peer networks with the ability to play
back while downloading. Notwithstanding such
limitations, interestingly the peer-to-peer net-
work is also characterized by a high degree of
content replication due to individual peers acting
as both clients and servers. For any content
query, existing peer-to-peer lookup protocols
can efficiently locate multiple peers with the
desired content. Therefore, in this article we tar-
get a solution where the requesting peer uses a
multipoint-to-point connection, as shown in Fig.
1, to simultaneously stream content from multi-
ple supplying peers for achieving the desired
playout rate.

� Figure 1. Multipoint-to-point communication.
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1 The R2CP protocol was
proposed in [7] for non-
real-time data transfer on
mobile hosts with hetero-
geneous wireless inter-
faces. In this article we
show that the principal
design elements of R2CP
with appropriate modifi-
cations allow it to achieve
effective multipoint-to-
point video streaming over
peer-to-peer networks.
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CHALLENGES

An important issue in realizing the benefits of
multipoint-to-point communication is the ability
to aggregate the bandwidths available along mul-
tiple paths (pipes) from individual sources to the
destination. We identify two key challenges
involved in achieving multipoint-to-point video
streaming over peer-to-peer networks.

Peer heterogeneity: The characteristics of the
peers participating in peer-to-peer networks
exhibit a very high degree of heterogeneity. For
example, the authors in [1] find that the down-
stream bottleneck bandwidth in the peer-to-peer
network measured varies from less than 1 Mb/s
(bottom 20 percent) to more than 10 Mb/s (top
20 percent), while that of the upstream link
varies from less than 100 kb/s to more than 5
Mb/s. Moreover, the average path latency varies
from less than 70 ms (lower 20 percent) to more
than 280 ms (higher 20 percent). Since real-time
streaming applications typically use a finite play-
out buffer to allow for a small preroll delay, it is
critical that packets arrive in the order they will
be consumed by the application to minimize
losses due to buffer overflow and deadline
expiry. It is a nontrivial packet scheduling prob-
lem to minimize out-of-order arrivals and pack-
ets missing deadlines when the video is streamed
across multiple paths with potentially mis-
matched bandwidths and delays (and fluctua-
tions thereof due to network congestion or user
activity).

Peer transience: While servers in content
delivery networks are required to be highly avail-
able to serve content, this is not the case for
peers voluntarily participating in content sharing.
The authors in [1] show that most sessions in a
peer-to-peer network are relatively short, with
the median approximately equal to 60 min. A
similar study [8] shows that around 60 percent of
the hosts in the network keep active for no
longer than 10 min. Therefore, it is very likely
that during content retrieval the sharing peers
could disconnect from the network or abort the
connection. Any streaming protocol thus needs
to handle peer transience such that the dynamic
departures of sources have minimal impact on
the performance perceived at the requesting
peer.

RELATED WORK
As mentioned earlier, although existing peer-to-
peer applications like Kazaa can use multiple
sources to speed up downloads, they are not
applicable to real-time video streaming that uses
a finite buffer and requires in-sequence delivery.
Similarly, related work such as [2, 3] is designed
for non-real-time file downloads, and hence can-
not be used to provide the desired solution.

In [5] the authors propose an approach that
uses multiple description coding (MDC) for
video streaming from multiple servers in content
delivery networks. Multiple complementary
descriptions for a video stream are created and
distributed across the edge servers (surrogates)
in the network. The authors consider the prob-
lems of server coloring (code distributions), serv-
er placement, and server selection for optimizing
client performance. The proposed approach,

however, is not applicable to peer-to-peer net-
works, where the distribution of the peers partic-
ipating in streaming is not static, and the path
characteristics are not known a priori. The over-
heads incurred in applying MDC across paths
with mismatched data rates (e.g., the need to
estimate data rates for achieving unbalanced
encoding or quality adaptation) can further
make such an approach undesirable in peer-to-
peer networks. In [6] the authors propose an
approach that streams video from multiple dis-
tributed video servers. This approach requires
periodic synchronization between servers in
terms of sending rates and sending sequences.
However, synchronization introduces overheads
in terms of packet duplicates or losses. More-
over, since servers are in control of the stream-
ing process, such an approach will suffer from
significant connection disruptions or abortion in
peer-to-peer networks due to dynamic peer
departures.

In [9] the authors consider peer-to-peer
streaming using multiple sources. They focus on
the problem of data assignment when the band-
width available at each source is predetermined.
The proposed solution is later extended to a new
system in [10]. In the proposed approach, the
receiver maintains with each source a UDP con-
nection for streaming, and a TCP connection for
sending control information such as rate and
data assignment. The receiver periodically moni-
tors (probes) the status of peers and connec-
tions. With knowledge of the offered rate and
loss rate along each path, the receiver computes
the ideal streaming rates and data portions that
should be served by individual sources, and
updates the assignment whenever network fluc-
tuations and peer failures are detected. While
the proposed approach addresses peer hetero-
geneity and transience, it requires the service
provided by lower layers for measuring the
offered rate, loss rate, and round-trip time (for
calculating the TCP-friendly rate). Moreover,
the use of separate TCP connections for sending
assignment information incurs additional over-
head whenever updates are necessary due to net-
work fluctuations. In this article we propose an
approach that allows the receiver to stream from
multiple sources by maintaining a multipoint-to-
point connection, without the need to use explic-
it network measurements and control channels.

THE R2CP PROTOCOL
We now present the R2CP protocol that address-
es the challenges identified above and enables
effective multipoint-to-point video streaming
over peer-to-peer networks.

AN ARCHITECTURAL OVERVIEW
R2CP is a receiver-driven multistate transport
protocol that supports both unicast (one source)
and multipoint-to-point (multiple sources) con-
nections. As we show in Fig. 2, an R2CP connec-
tion with k sources can be decomposed into the
following two components:
• k RCP pipes that connect individual senders

(sources) to the receiver (destination)
• An R2CP engine that coordinates multiple

RCP pipes at the receiver
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The R2CP engine resides only at the receiver,
and is transparent to the senders as far as the
protocol handshake along each RCP pipe is con-
cerned. RCP by design is a TCP clone that
reuses most of the transport mechanisms in
TCP, including a window-based congestion con-
trol mechanism such as streaming-friendly bino-
mial congestion control [11]. The difference,
however, is that RCP transposes the intelligence
of TCP from the sender to the receiver such that
the RCP receiver drives the operations of the
protocol, while the RCP sender merely responds
to the instructions (requests) sent by the receiv-
er. The transposition of functionalities allows the
receiver to be in charge of the connection pro-
gression along each pipe, including congestion
control and loss recovery,2 and hence facilitates
the coordination task performed by the R2CP
engine. Note that using sender-centric protocols
such as TCP for individual pipes is not a scalable
option, as the geographically distributed sources
would have to be explicitly coordinated to sup-
port the same semantics.

The receiver in an R2CP connection is the
primary seat of intelligence for most protocol
functionalities, including congestion control, loss
recovery, and packet scheduling. R2CP decou-
ples the protocol functionalities associated with
individual paths from those pertaining to the
aggregate connection. The per-connection and
per-pipe functionalities are handled by the R2CP
engine and RCP, respectively. For example, con-
gestion control estimates the available band-
width of the underlying path, and hence is
performed by RCP on a per-pipe basis. On the
other hand, packet scheduling pertains to the
aggregate connection, and hence is handled by
the R2CP engine. In this way individual RCPs
track the characteristics of the underlying paths
and control how much data to request from each
source, while the R2CP engine tracks the pro-
gression of the connection and controls which
data to request from each source.

The design of the two-tier architecture
together with the decoupling of functionalities

provides R2CP with the following benefits in
supporting multipoint-to-point video streaming
over peer-to-peer networks:
• Since congestion control is performed on a

per-pipe basis, any existing congestion con-
trol algorithms can be used for each pipe
without suffering from performance degra-
dation due to operating over multiple het-
erogeneous paths.

• Since the R2CP engine is the only entity
responsible for scheduling requests of appli-
cation data, any reliability semantics
required by the application can be support-
ed through interfaces with the R2CP engine
(e.g., using application-level framing [12])
without interfering with the operations
(e.g., congestion control) performed along
each pipe. We note that the purely unreli-
able service provided by UDP is insufficient
for video streaming [13].

• Since the R2CP engine is responsible for the
aggregate connection, and its operation is
internal to the receiver, the shutdown of any
RCP source (due to, say, transience of the
supplying peer) can have minimal impact on
the progression of the connection.
In the following, we discuss how R2CP

achieves the decoupling of functionalities
through dynamic binding of application data.

DYNAMIC BINDING
Whereas the R2CP engine at the receiver han-
dles the socket buffer and maintains the global
sequence number, individual RCPs maintain
local sequence numbers for their protocol opera-
tions.3 Hence, even though the congestion con-
trol mechanism used in RCP is designed for
in-sequence delivery (recall that RCP is a TCP
clone where loss recovery and congestion control
are coupled), the R2CP engine can retrieve non-
contiguous data from each source (to minimize
out-of-order arrivals as we discuss in packet
scheduling) without triggering the adverse reac-
tions in RCP. The mappings (bindings) between
the local and global sequence numbers are main-
tained by the R2CP engine in the binding data
structure. As we show in Fig. 3, the R2CP engine
is a wrapper around RCP, serving the read/write
from the application and IP layers. Any local
sequence number used by RCP will be converted
to the global sequence number by the R2CP
engine before transmissions, and vice versa.
(Note that individual RCP senders process the
requests from the receiver based on the global
sequence number.) From the perspective of the
R2CP engine, the binding data structure allows
it to control which application data should be
assigned to (requested from) which RCP pipe
depending on its transmission schedule, while
still ensuring a contiguous sequence number
space for each RCP to perform congestion con-
trol.

The binding between the application data and
the local sequence number is, however, not static
for the following two reasons:
• RCP supports the fully reliable semantics as

TCP, and hence uses retransmissions for
loss recovery. However, if the R2CP engine
deems it unnecessary to recover the lost
data (e.g., due to deadline expiry), new

� Figure 2. R2CP for multipoint-to-point communication.
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2 We refer interested read-
ers to [7] for detailed
operations of RCP,
including the duality
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3 For clarity of presenta-
tion, in this article we
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ber. We also assume in
this article that MSS is the
same across all RCP pipes
in the connection,
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requirement for the actual
protocol operations.
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application data will be bound to the
retransmission requests. Even if the appli-
cation data needs to be retransmitted, it
can be sent through another pipe with, say,
a shorter round-trip time depending on the
schedule.

• If an RCP pipe is closed (e.g., due to peer
departures), the application data bound to
the pipe will be reassigned to other pipes
for recovery (whenever appropriate).
Such dynamic binding between the applica-

tion data and RCP local sequence numbers
reduces the role of individual RCPs to providing
transmission slots that track the available band-
width along each path. The R2CP engine can
flexibly utilize the transmission slots for packet
scheduling, as discussed in the following.

PACKET SCHEDULING
While individual RCP pipes provide transmis-
sion slots for data requests from the sources, a
key task that needs to be performed by the R2CP
engine is to decide which data to request for
each transmission slot; that is, to schedule
requests of application data. The objective is to
minimize the number of packet losses at the
receiver due to either buffer overflow or dead-
line expiry. We observe that an optimal schedule
(that minimizes the number of packet losses) for
streaming packets with non-decreasing deadlines to
a buffer limited receiver is one that ensures in-
sequence arrival of packets at the receiver. Intu-
itively, in-sequence delivery minimizes the
chances of buffer overflow at the receiver. More-
over, since the deadlines associated with packets
of increasing sequence numbers are non-decreas-
ing, in-sequence delivery also minimizes the
chances of packets missing the deadlines.

To minimize out-of-order arrivals, the R2CP
engine needs information regarding the band-
widths and latencies of individual pipes. Since
congestion control is a process of bandwidth
estimation, changes in bandwidth and latency
are directly reflected through the changes in the
size of the congestion window. Hence, the pro-
gression of the congestion window in RCP pro-

vides an effective way for the R2CP engine to
track the available bandwidth along each pipe.
The R2CP engine uses the arrivals of data to
clock the transmissions of new requests, and
schedules a request along a path only when the
concerned RCP pipe has space in its congestion
window for requests. Since the request (REQ) in
RCP has the dual role of the acknowledgment
(ACK) in TCP for congestion control [7], the
use of such a fine-grained packet scheduling
allows R2CP to closely track the bandwidth fluc-
tuations without incurring extra overheads com-
pared to TCP.

While one simple way to schedule a request
is to assign the next global sequence number to
the new request, such first-come-first-served
(FCFS) scheduling will cause out-of-order
arrivals due to mismatched latencies along dif-
ferent paths. The assignment instead should be
based on the potential order (rank) of data
packets arrivals. The R2CP engine maintains a
rank data structure for finding the rank of the
new request. Specifically, whenever the R2CP
engine sends out a request for sequence number
i through pipe j, an entry is added to the rank
data structure with a timestamp of S = Ti +
RTTj, where Ti is the time when the request is
sent, and RTTj is the round-trip time of pipe j.
The timestamp reflects the time when a new
request will be issued in response to the arrival
of the requested data. When the R2CP engine
receives the send() call from pipe k at time T, it
locates the rank r of the request as

where N is the total number of entries in rank,
Sn is the timestamp at entry n, p(n) is the pipe
that sent out the request at entry n, and x+ is
the maximum of zero and the largest integer less
than or equal to x. In other words, the R2CP
engine finds the number of data segments that
will be requested after T (due to arrivals of
pending requests) but arrive before T + RTTk.
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� Figure 3. R2CP architecture.
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Once the rank r is identified, the R2CP engine
binds the rth data in line to the new request, and
adds an entry for the request in the rank data
structure as usual. The entry is deleted when the
corresponding data arrives.

PROTOCOL OPERATIONS
We have so far presented the software architec-
ture of R2CP, and its dynamic binding and pack-
et scheduling operations. In this section we
present the protocol operations of R2CP using
Fig 3.

When pipe p that has space in its congestion
window uses the send() call (with local sequence
number l as the parameter) to request for trans-
mission at time T, R2CP locates the rank r of the
request using the rank data structure as we dis-
cussed earlier. The rth data to request in the
pending data structure is identified as the seg-
ment with sequence number g. The R2CP engine
then creates a placeholder (e.g., an skbuf with-
out data [14]) in recv_buffer expecting the
arrival of data segment g. It adds for data g an
entry (p, l) in the binding data structure and an
entry T + RTTp in the rank data structure. It
finally sends out the request packet to the IP
layer using g as the sequence number and then
removes g from the  pending data structure. The
highest sequence number h for data that has
been delivered to the application is also included
in the request packet.

When the request packet arrives at the send-
ing end of pipe p, the sender finds in its
send_buffer the data with sequence number g,
and sends out the data packet to the IP layer.
The sender then purges data in its buffer with
sequence numbers lower than h. Since the sender
simply echoes whatever data is requested from
the receiver, out-of-order or non-contiguous
transmissions are possible at individual senders.

When data segment g arrives, the R2CP
engine enqueues the data to its placeholder in
recv_buffer, finds the corresponding RCP pipe
p and the local sequence number l based on the
binding data structure, and passes l to the con-
cerned RCP pipe using the recv() call. It then
deletes the corresponding entries in the binding
and rank data structures. The concerned RCP
pipe updates its states (e.g., congestion window
and the next local sequence number to request)
and determines whether it can send more
requests or not based on the size of its conges-

tion window. If it can generate more requests, it
uses the send() call with the next local sequence
number for transmission request as before. If any
loss is detected via three out-of-order arrivals or
timeouts [7], the RCP pipe uses the loss() call to
notify the R2CP engine, which then unbinds the
global sequence numbers corresponding to the
lost packets by deleting the corresponding entries
in the binding and rank data structures.
Depending on the reliability semantics required
by the application, the unbound sequence num-
bers will be re-inserted to the pending data
structure waiting for retransmissions, or simply
discarded. If the RCP pipe has a new estimate
for RTT, it uses the update() call to notify the
R2CP engine, which then appropriately updates
the rank data structure.

Whenever the R2CP engine receives the
send() call from an RCP pipe but does not have
space in its recv_buffer to receive more appli-
cation data (due to, say, application backlog), it
returns with FREEZE and puts the corresponding
RCP in the active data structure. Later, if
space opens up in its recv_buffer (due to, say,
application read), the R2CP engine uses the
resume() call to de-freeze pipes in the active
data structure. Resumed pipes will as usual issue
requests through the send() call depending on
individual states.

The open() and close() calls are used by the
R2CP engine to add or delete RCP pipes in the
connection during connection setup and tear-
down, or even in the middle of the connection.
Since the RCP pipes are responsible only for
providing transmission slots in the R2CP connec-
tion, it is clear that adding or deleting RCP
pipes has minimal impact on the operations of
R2CP. As mentioned above, whenever an RCP
pipe is closed during the progression of the con-
nection, all global sequence numbers bound to
the concerned pipe will be unbounded and re-
inserted (whenever appropriate) to the pending
data structure for retransmissions.

PERFORMANCE EVALUATION
In this section we present the evaluation results
for R2CP. We first explain the simulation model
based on the ns-2 network simulator. We then
show the performance of R2CP in achieving effec-
tive video streaming using network simulation.

THE SIMULATION MODEL
We use the network topology shown in Fig. 4 to
evaluate the performance of R2CP. The network
topology consists of six routers and six access
nodes (peers) connected using duplex links with
bandwidths and propagation delays as shown in
the figure (note that while all access links have
asymmetric bandwidths, the figure only shows
the bandwidth in the direction of the multipoint-
to-point connection). Node D is the peer
requesting the video clip, and nodes S0 to S4 are
peers returned by the peer-to-peer lookup proto-
col that have the desired content. We assume
that the target streaming rate is 1376 kb/s (the
standard file size of a VCD movie is 172 kbytes/
min). The initial playout delay is set to 5 s.

We first study the performance of R2CP in
aggregating the bandwidths available along mul-

� Figure 4. Network topology.
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tiple pipes with mismatched bandwidths and
latencies. We assume the content is transferred
from two supplying peers (S0 and S1). We first
vary the bandwidth x of the bottleneck link
between S0 and D from 200 to 750 kb/s, while
that between S1 and D varies from 1300 to 750
kb/s accordingly (the bandwidth ratio between
the two pipes thus varies from 1 to about 6). We
then vary the propagation delay y on link R0–R1
from 10 to 150 ms such that the latency ratio
between the two pipes varies from 1 to 8. Final-
ly, we introduce bandwidth and delay fluctua-
tions to the two pipes using on/off UDP
background traffic traversing from S0 to R1 and
from S1 to R1, respectively. We use the Pareto
traffic source for both background flows, where
the data rate during the burst time from S0 is set
to 200 kb/s, and that from S1 is set to 500 kb/s.
The mean burst time is  0.1t s, the mean idle
time is 0.2t s, and the shape parameter is 1.5.
We vary t from 1 to 100 to observe the scalability
of R2CP with the degree of fluctuations in back-
ground traffic.

Thereafter, we study the performance of
R2CP in achieving multipoint-to-point video
streaming. We set the bandwidth of link S0–R0
to 128 kb/s and the delay of link R0–R1 to 20
ms, and consider a more complicated scenario
where the desired content is streamed from four
heterogeneous peers (S0, S2, S3, and S4) with
bandwidth/delay mismatches and fluctuations
due to background traffic. In addition to the tar-
get multipoint-to-point connection, we introduce
the following background traffic while the
streaming takes place:

1) File download at S1: A TCP flow from S2
to S1 using FTP as the traffic source.

2) Web browsing at S3: An on/off UDP flow
from S3 to R0 using the Pareto traffic source
with a mean burst time of 1 s, a mean idle time
of 2 s, a data rate during burst time of 200 kb/s,
and a shape parameter of 1.5 (for emulating the
request traffic in the uplink).

3) Web browsing at S4: An on/off UDP flow
from S4 to R4, similar to 2) but with the follow-
ing parameters: 0.5 s, 1 s, 100 kb/s, and 1.5.

4) Backbone long-lived flows: Five TCP flows
between R1 and R5 (bidirectional).

5) Backbone short-lived flows: 40 on/off UDP
flows between R1 and R5 (in both directions).

All pipes in the multipoint-to-point connec-
tion use binomial congestion control [11] with
the following parameters: k = 1.0, l = 0, α =
1.0, β = 0.66. We use TCP/Sack for all TCP
flows. The simulation is run for 600 s, and all
data points are averaged over 15 runs when ran-
domness is introduced.

SIMULATION RESULTS
Figure 5 shows the performance of R2CP to
effectively aggregate the bandwidths available
along pipes in the multipoint-to-point connec-
tion. We compare the performance of R2CP
against that of the following approaches:

Ideal: The ideal performance for bandwidth
aggregation is equal to the throughput sum of
individual pipes when independent TCP flows
are used (no head-of-line blocking).

Multiple sockets: An approach that opens
multiple TCP sockets and requests data from

� Figure 5. Scalability with peer heterogeneity: a) rate differential; b) delay dif-
ferential; c) traffic fluctuations.
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each socket in a round-robin fashion. The appli-
cation uses a finite resequencing buffer to
achieve in-sequence delivery. The goal is to show
the impact of peer heterogeneity on a pure
application layer approach (without transport
layer support) that has no knowledge of the net-
work characteristics.

R2CP without RTT-scheduling: A simplified
version of R2CP that uses FCFS scheduling for
assigning packets to individual pipes. Essentially,
the R2CP engine simply assigns the next packet
in the pending data structure to the next pipe
that requests to send, without taking into consid-
eration its round-trip time.

It is clear from Fig. 5a that the multisocket
approach does not scale when the bandwidths of
the two pipes are different. This is due to the
application being unaware of the bandwidths
available along the paths traversed by individual
pipes, which otherwise would require the use of
a sophisticated bandwidth estimation and prob-
ing mechanisms implemented at the application.
R2CP, on the other hand, achieves the ideal per-
formance even when the bandwidth ratio of the
two pipes goes beyond 6 (using the same buffer
space as in the multisocket approach), by reusing
the congestion control mechanism implemented
along each pipe for effective striping. As we
described earlier, a key element of the R2CP
engine is to maintain the rank data structure for
packet scheduling such that packets requested
through different pipes arrive in sequence. We
observe in Fig. 5b that such packet scheduling
indeed allows R2CP to effectively uses the band-
widths available along different pipes with large
RTT mismatches.4 Finally, we find in Fig. 5c
that the performance of R2CP to effectively
aggregate the available bandwidths remains valid
under bandwidth and delay fluctuations due to
background traffic.

We now show the performance of R2CP to
use the available bandwidths along individual
pipes for achieving effective video streaming. As
described above, the connection consists of four
supplying peers with bandwidth/delay mismatch-
es and fluctuations due to background traffic.
The target streaming rate is 1376 kb/s. Figure 6a
shows the instantaneous goodput (receive rate in
5-s bins) observed at the receiver (node D),
along with the desired streaming rate and the
send rates from individual pipes. We can make
the following observations from the figure:
• Because of the on/off UDP flows, the indi-

vidual send rates of the S3 and S4 pipes
show large fluctuation, despite the use of
the binomial congestion control scheme.
For example, the maximum fluctuation on
the S3 pipe is 232 kb/s, and that on the S4
pipe is 224 kb/s.

• When competing with regular TCP flows,

� Figure 6. Multipoint-to-point video streaming: a) instantaneous data rate; b)
playout buffer occupancy; c) resequencing buffer occupancy.
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4 However, we note that when the latency ratio between
component pipes is small, pure congestion-window-based
packet scheduling also achieves reasonable performance.
The reason is that the progression of the congestion win-
dow (which clocks the request for individual pipes) is
determined by the bandwidth-delay product of the under-
lying path, rather than the bandwidth alone. It hence can
be used as a lightweight protocol for small latency ratio.
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the binomial congestion control used on the
S2 pipe allows it to achieve a relatively
smooth send rate. However, a period of
long-term unfairness for approximately 150
s can persist due to its slowly-responsive
nature to network congestion.
•The aggregate receive rate observed at the

receiver manages to stay around the target
streaming rate despite the large fluctuations on
the S3 and S4 pipes, and the long-term unfair-
ness on the S2 pipe. This is because the fluctua-
tions on individual pipes can potentially be
absorbed by other pipes in a multipoint-to-point
connection, as evident from the “forced” fluctua-
tions on the S0 pipe that are complementary to
the fluctuations on the S3 and S4 pipes; note
that the bandwidth of the bottleneck link on the
S0 pipe does not exhibit any fluctuations (see
the simulation model).

The performance of R2CP in achieving effec-
tive video streaming can also be observed from
Fig. 6b, where we show the occupancy of the
playout buffer. We observe that after the initial
ramp-up due to the playout delay, the maximum
variation in the playout buffer is only around 100
packets, meaning a relatively stable aggregate
transfer rate from multiple sources to the desti-
nation despite the fluctuations along individual
paths. Finally, we show the size of the rese-
quencing buffer (recv_buff) at the R2CP
engine. R2CP delivers packets to the application
(which are then stored in the application buffer
pending playout), and purges packets that are in
sequence or determined to be lost by individual
pipes (through duplicates or timeouts). The size
of the resequencing buffer is calculated upon
arrival of new packets. From Fig. 6c we can see
the packet scheduling algorithm used by R2CP
greatly reduces out-of-order arrivals from multi-
ple pipes, and avoids the requirement for a large
resequencing buffer used by the multipoint-to-
point connection.

SUMMARY
In this article we investigate the problem of mul-
tipoint-to-point video streaming over peer-to-
peer networks. We present a transport layer
protocol called R2CP that effectively enables
real-time multipoint-to-point video streaming
from heterogeneous peers showing large band-
width and delay mismatches along respective
end-to-end paths. R2CP is receiver-driven,
requires no coordination between multiple
sources, accommodates flexible application layer
reliability semantics, and uses TCP-friendly con-

gestion control. Simulation results show that
R2CP can effectively achieve multipoint-to-point
streaming over peer-to-peer networks.
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