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Digital Speech Processing—
Lecture 13

Linear Predictive 
Coding (LPC)-
Introduction
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LPC Methods
• LPC methods are the most widely used in 

speech coding, speech synthesis, speech 
recognition, speaker recognition and verification 
and for speech storage
– LPC methods provide extremely accurate estimates 

of speech parameters, and does it extremely 
efficiently

– basic idea of Linear Prediction: current speech 
sample can be closely approximated as a linear
combination of past samples, i.e.,
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LPC Methods

 for periodic signals with period , it is obvious that
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 but that is not what LP is doing; it is estimating ( ) from 
  the  (  ) most recent values of ( ) by linearly 

  predicting
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 its value
 for LP, the predictor coefficients (the 's) are determined 

  (computed) by 
  (over a finite interval) 

α• k

minimizing the sum of  squared differences 
between the actual speech samples

  and the linearly predicted ones
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LPC Methods
 LP is based on speech production and synthesis models

     - speech can be modeled as the output of a linear, 
       time-varying system, excited by either quasi-periodic 
       pulses or noise;
    -

•

 assume that the model parameters remain constant
      over speech analysis interval  
 LP provides a  for 

  estimating the parameters of the linear system (the com
� robust, reliable and accurate method

bined 
  vocal tract, glottal pulse, and radiation characteristic for voiced speech)
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LPC Methods
• LP methods have been used in control and 

information theory—called methods of system 
estimation and system identification

– used extensively in speech under group of names 
including

1. covariance method
2. autocorrelation method
3. lattice method
4. inverse filter formulation
5. spectral estimation formulation
6. maximum likelihood method
7. inner product method
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Basic Principles of LP
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• the time-varying digital filter 
represents the effects of the glottal 
pulse shape, the vocal tract IR, and 
radiation at the lips

• the system is excited by an impulse 
train for voiced speech, or a random 
noise sequence for unvoiced speech

• this ‘all-pole’ model is a natural 
representation for non-nasal voiced 
speech—but it also works reasonably 
well for nasals and unvoiced sounds
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LP Basic Equations
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 a  order linear predictor is a system of the form
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ediction error is the output of a system with transfer function
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LP Estimation Issues

 need to determine { } directly from speech such 
  that they give good estimates of the time-varying 
  spectrum
 need to estimate { } from short segments of speech

 need to minimize mean-squared pr
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ediction error over 

  short segments of speech
 resulting { } assumed to be the actual { } in the 

  speech production model
=> intend to show that all of this can be done 
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efficiently, 
  reliably, and  for speech accurately
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Solution for {αk}
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 short-time average prediction squared-error is defined as
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Solution for {αk}
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 can find values of  that minimize  by setting:
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Solution for {αk}
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 defining

        ( , ) ( ) ( )

 we get

        ( , ) ( , ), , ,...,

 leading to a set of  equations in  unknowns that can be

  solved in an efficient manner for the { }
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Solution for {αk}

2

1

1

0 0 0

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ

 minimum mean-squared prediction error has the form
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 which can be written in the form
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Autocorrelation Method
0 1

0 1
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 assume ( ) exists for  and is 
  exactly zero everywhere else (i.e., window of 
  length  samples)  ( )
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Autocorrelation Method
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 if ( ) is non-zero only for  then 
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, ...., ) we are predicting signal from zero-valued samples 
outside the window range  => ( ) will be (relatively) large 
 at values near  (i.e., , ,..., ) we are predicting zero-valu
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 for these reasons, normally use windows that taper the segment to zero (e.g., Hamming window)•
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Autocorrelation Method
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The “Autocorrelation Method”
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The “Autocorrelation Method”
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Autocorrelation Method
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 for calculation of ( , ) since ( )  outside the range , then
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Autocorrelation Method
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Autocorrelation Method
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  as expressed in matrix form
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Covariance Method

ˆ

 there is a second basic approach to defining the speech 
  segment ( ) and the limits on the sums, namely 

 over which the mean-squared error is computed, 
  giving ( )

•

ns m fix the 
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Assumption #2
21 1

2

0 0 1

1

0

1 0

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

:

             ( ) ( ) ( )

( , ) ( ) ( ), ,

α

φ

− −

= = =

−

=

⎡ ⎤
= = − −⎢ ⎥

⎢ ⎥⎣ ⎦

= − − ≤ ≤ ≤ ≤

∑ ∑ ∑

∑

pL L

kn n n n
m m k

L

n n n
m

E e m s m s m k

i k s m i s m k i p k p

22

Covariance Method
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 changing the summation index gives
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Covariance Method
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Covariance Method
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 cannot use autocorrelation formulation => this is a true cross correlation
 need to solve set of equations of the form
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Covariance Method
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 we have ( , ) ( , ) => symmetric but not Toeplitz matrix 
  whose diagonal elements are related as
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Summary of LP

ˆ

ˆ use  order linear predictor to predict ( ) from  previous samples
 minimize mean-squared error, , over analysis window of duration -samples
 solution for optimum predictor coefficients, {α

•
•

•

th

n

p s n p
E L

}, is based on solving a matrix equation 
   => two solutions have evolved
     -  => signal is windowed by a tapering window in order to 
       minimize discontinuities at beginn

k

autocorrelation method

ˆ

ing (predicting speech from zero-valued samples) 
       and end (predicting zero-valued samples from speech samples) of the interval; the 
       matrix ( , ) is shown to be an autocorrelation functφn i k ion; the resulting autocorrelation 
       matrix is Toeplitz and can be readily solved using standard matrix solutions
    -   => the signal is extended by  samples outside the normalpcovariance method

0 1 0
0

range 
       of -  to include  samples occurring prior to ; this eliminates large errors 
       in computing the signal from values prior to  (they are available) and eliminates the 
     

≤ ≤ =
=

m L p m
m

  need for a tapering window; resulting matrix of correlations is symmetric but not Toeplitz 
       => different method of solution with somewhat different set of optimal prediction 
       coefficients, { }αk
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LPC Summary
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1.  Speech Production Model:
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LPC Summary
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3.  LPC Minimization:
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LPC Summary
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4.  Autocorrelation Method:
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LPC Summary
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4.  Autocorrelation Method:
  resulting matrix equation:

or
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LPC Summary
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5.  Covariance Method:
  fix interval for error signal
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n

i i p

E k

p
p

p

1

2

1 0
2 0

2 0

ˆ

ˆ

ˆ ˆ ˆ

( , )
( , )

. .        

. .
) ( , ) . . ( , ) ( , )

α φ
α φ

αφ φ φ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

n

n

pn n np p p p 32

Computation of Model Gain
 it is reasonable to expect the model gain, , to be determined by matching

  the signal energy with the energy of the linearly predicted samples
 from the basic model equations we have

               

•

•

G

1

1

( ) ( ) ( ) model

 whereas for the prediction error we have

             ( ) ( ) ( ) best fit to model

 when  (i.e., perfect match to model), then
             ( ) ( )
 

α

α

=

=

= − − ⇒

•

= − − ⇒

• =

=
•

∑

∑

p

k
k

p

k
k

k k

Gu n s n a s n k

e n s n s n k

a
e n Gu n

since it is virtually impossible to guarantee that , cannot use this
  simple matching property for determining the gain; instead use energy 
  matching criterion (energy in error signal=energy in 

α =k ka

1 1
2 2 2

0 0
ˆ

excitation)

             ( ) ( )
− + − +

= =

= =∑ ∑
L p L p

n
m m

G u m e m E

33

Gain Assumptions

 assumptions about excitation to solve for 
-- ( ) ( )   order of a 

      single pitch period; predictor order, , large enough 
      to model glottal pulse shape, vocal tract IR, and

δ
•
− = ⇒

G
u n n L

p
voiced speech

 
      radiation
  -- ( )-zero mean, unity variance, 
     stationary white noise process
− u nunvoiced speech

34

Solution for Gain (Voiced)

1

1

1

 for voiced speech the excitation is ( ) with output ( ) (since it is 
  the IR of the system), 

        ( ) ( ) ( ); ( )
( )

 with autocorrelation ( ) (of the impu

δ

α δ

α= −

=

•

= − + = =

−

•

∑
∑

%

% % %

%

p

k p
k k

k
k

G n h n

G Gh n h n k G n H z
A z

z

R m

0

1

2

1

0

1

0 0

lse response) satisfying the relation 
  shown below 

             ( ) ( ) ( ) [ ],

( ) ( ),

( ) ( ) ,

α

α

∞

=

=

=

= + = − ≤ < ∞

= − ≤ < ∞

= + =

∑

∑

∑

% % % %

% %

% %

n
p

k
k
p

k
k

R m h n h m n R m m

R m R m k m

R R k G m

35

Solution for Gain (Voiced)

0

0

ˆ

 Since ( ) and ( ) have the identical form, it follows that

              ( ) ( ),
where  is a constant to be determined.
 Since the total energies in the signal ( ( )) and the impulse

•

= ⋅ ≤ ≤

•

%

%
n

n

R m R m

R m c R m m p
c

R

2

1

0

0

0

ˆ ˆ ˆ

ˆ

 

  response ( ( )) must be equal, the constant  must be 1, and 
  we obtain the relation

             ( ) ( )

 since ( ) ( ), , and the energy of the impulse 
  response=en

α
=

= − =

• = ≤ ≤

∑

%

%

p

kn n n
k

n

R c

G R R k E

R m R m m p
1

1

ergy of the signal => first  coefficients of the 
  autocorrelation of the impulse response of the model are identical 
  to the first  coefficients of the autocorrelation function of the 
  speech

+

+

p

p
 signal.  This condition called the 
 of the autocorrelation method.

autocorrelation matching
property 36

Solution for Gain (Unvoiced)
 for unvoiced speech the input is white noise with zero mean 

  and unity variance, i.e.,
              ( ) ( ) ( )
 if we excite the system with input ( ) and call the output 

  ( ) then

  

δ

•

− =⎡ ⎤⎣ ⎦
•
%

E u n u n m m

Gu n
g n

1

            ( ) ( ) ( )

 Since the autocorrelation function for the output is the convolution
  of the autocorrelation function of the impulse response with the 
autocorrelation function 

α
=

= − +∑% %

�

p

k
k

g n g n k Gu n

1

of the white noise input, then

             [ [ ] [ ]] [ ] [ ] [ ]

 letting ( ) denote the autocorrelation of ( ) gives

              ( ) ( ) ( ) [ ( ) ( )] (

δ

α
=

− = ∗ =

•

= − = − − +⎡ ⎤⎣ ⎦ ∑

% %% %

% %

% % % % %
p

k
k

E g n g n m R m m R m

R m g n

R m E g n g n m E g n k g n m E Gu n

1

0

0 0

) ( )

( ),

 since ( ) ( )  for  because ( ) is uncorrelated 

  with any signal prior to ( )

α
=

−⎡ ⎤⎣ ⎦

= − ≠

• − = >⎡ ⎤⎣ ⎦

∑

%

%

%

p

k
k

g n m

R m k m

E Gu n g n m m u n

u n
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Solution for Gain (Unvoiced)

1

2

1
2

0

0

 for  we get

             ( ) ( ) ( ) ( )

( )

 since ( ) ( ) ( )( ( ) terms prior to 

 since the energy in the signal must equal the energy in 
  the

α

α

=

=

• =

= + ⎡ ⎤⎣ ⎦

= +

• = + =⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦
•

∑

∑

% % %

%

%

p

k
k
p

k
k

m

R R k GE u n g n

R k G

E u n g n E u n Gu n n G

2

1

0

ˆ

ˆ ˆ ˆ

 response to ( ) we get

             ( ) ( )

( ) ( )α
=

=

= − =∑

%
n

p

kn n n
k

Gu n

R m R m

G R R k E
38

Frequency 
Domain 

Interpretations 
of Linear 

Predictive 
Analysis

39

The Resulting LPC Model
{ }

1

1 2

1

 The final LPC model consists of the LPC parameters, 
   , , ,..., ,  and the gain, ,  which together 
    define the system function

          ( )

 with frequency response

         

α

α −

=

=

=
−∑

�

%

�

%

k

p
k

k
k

k p G

GH z
z

H

( )

1

22

1

1

0ˆ ˆ ˆ ˆ

( )
( )

 with the gain determined by matching the energy of the
  model to the short-time energy of the speech signal, i.e.,

        ( ) ( ) ( )

ω
ω

ωα

α

−

=

=

= =
−

= = = −

∑

∑ ∑

�

j
p j

j k
k

k

p

kn n n n
m k

G Ge
A ee

G E e m R R k
40

LPC Spectrum

x = s .* hamming(301);
X = fft( x , 1000 )
[ A , G , r ] = autolpc( x , 10 )
H = G ./ fft(A,1000);1

1
( )ω

ωα −

=

=
−∑

% j
p

j k
k

k

GH e
e

LP Analysis is seen to be a method of short-time spectrum estimation with 
removal of excitation fine structure (a form of wideband spectrum analysis)

41

LP Short-Time Spectrum Analysis

• Defined speech segment as:

• The discrete-time Fourier transform of this 
windowed segment is:

• Short-time FT and the LP spectrum are linked 
via short-time autocorrelation

ˆ ˆ[ ] [ ] [ ]ns m s m n w m= +

( )ˆ ˆ[ ] [ ]j j m
n

m
S e s m n w m eω ω

∞
−

=−∞

= +∑

42

LP Short-Time Spectrum Analysis

(a) Voiced speech segment 
obtained using a 
Hamming window

(b) Corresponding short-
time autocorrelation 
function used in LP 
analysis (heavy line 
shows values used in LP 
analysis)

(c) Corresponding short-
time log magnitude 
Fourier transform and 
short-time log magnitude 
LPC spectrum (FS=16 
kHz)
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43

LP Short-Time Spectrum Analysis

(a) Unvoiced speech 
segment obtained using 
a Hamming window

(b) Corresponding short-
time autocorrelation 
function used in LP 
analysis (heavy line 
shows values used in LP 
analysis)

(c) Corresponding short-
time log magnitude 
Fourier transform and 
short-time log magnitude 
LPC spectrum (FS=16 
kHz)

44

Frequency Domain Interpretation of 
Mean-Squared Prediction Error

ˆ

2
ˆ

0

ˆ

 The LP spectrum provides a basis for examining the properties
of the prediction error (or equivalently the excitation of the VT)
 The mean-squared prediction error at sample  is:

     
n

L p

n
m

n

E e
+

=

=

�

�
1

2 2 2 2
ˆ ˆ ˆ

ˆ ˆ

[ ]

1 1| ( ) | | ( ) | | ( ) |
2 2

( ) [ ] ( )

 which, by Parseval's Theorem, can be expressed as:

      

 where  is the FT of  and  is the corresponding
prediction 

j j j
n n n

j j
n n

m

E e d S e A e d G

S e s m A e

π π
ω ω ω

π π

ω ω

ω ω
π π

−

− −

= = =

∑

∫ ∫E

�

�

1

( ) 1

error frequency response

     
p

j j k
k

k

A e eω ωα −

=

= −∑

45

Frequency Domain Interpretation of 
Mean-Squared Prediction Error

22
2ˆ

ˆ 2

( )
( )

| ( ) |
2 | ( ) |

 The LP spectrum is of the form:

     

 Thus we can express the mean-squared error as:

     

 We see that minimizing total squared prediction error 

j
j

j
n

n j

GH e
A e

S eGE d G
H e

ω
ω

π ω

ω
π

ω
π −

=

= =∫

�

%

�

%

�

is equivalent to finding gain and predictor coefficients
such that the integral of the ratio of the energy spectrum of
the speech segment to the magnitude squared of the frequency
response of the model l

2
ˆ

2
ˆ

2
ˆ

| ( ) |

| ( ) |

| ( ) |

inear system is unity.
 Thus  can be interpreted as a frequency-domain

weighting function  LP weights frequencies where 
is large more heavily than when  is small.

j
n

j
n

j
n

S e

S e

S e

ω

ω

ω

⇒

�

46

LP Interpretation Example1

Much better 
spectral matches 
to STFT spectral 

peaks than to 
STFT spectral 

valleys as 
predicted by 

spectral 
interpretation of 

error 
minimization.

47

LP Interpretation Example2

Note small 
differences in 

spectral shape 
between STFT, 
autocorrelation 
spectrum and 

covariance 
spectrum when 

using short 
window duration 
(L=51 samples).

48

Effects of Model Order
ˆ ˆ[ ] [ ],

[ ], [ ],
( ),

( 1)

 The AC function,  of the speech segment, 

and the AC function,  of the impulse response, 
corresponding to the system function,  are equal for
the first  values.  Th

n nR m s m

R m h m
H z

p +

�

%%

%

2 2
ˆ

,

lim | ( ) | | ( ) |

( ),

us, as  the AC functions 
are equal for all values and thus:
     

 Thus if  is large enough, the FR of the all-pole
model,  can approximate the signal spectrum
wi

j j
np

j

p

H e S e

p

H e

ω ω

ω

→∞

→∞

=%

�

%

th arbitrarily small error.
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49

Effects of Model Order

50

Effects of Model Order

51

Effects of Model Order

52

Effects of Model Order

 plots show Fourier transform of segment 
and LP spectra for various orders
    - as  increases, more details of the spectrum 
      are preserved
    - need to choose a value of  that represents 
     

•

p

p
  the spectral effects of the glottal pulse, vocal 

       tract and radiation--nothing else

53

Linear Prediction Spectrogram

1
(2 / )

0
20log | [ ] | 20 log| [ ] [ ] |

, / , 1, 2,..., / 2

 Speech spectrogram previously defined as:

     

for set of times,  and set of frequencies, 
where  is the time shift (in s

L
j N km

r
m

r k S

S k s rR m w m e

t rRT F kF N k N
R

π
−

−

=

= +

= = =

∑

�

1/
amples) between adjacent STFTs, 

 is the sampling period,  is the sampling frequency, 
and  is the size of the discrete Fourier transform used to
compute each STFT estimate.
 Similarly we can def

ST F T
N

=

�

(2 / )

(2 / )

20log | [ ] | 20log
( )

( )
.

ine the LP spectrogram as an image plot of:

     

where  and  are the gain and prediction error polynomial
at analysis time 

r
r j N k

r

j N k
r r

GH k
A e

G A e
rR

π

π

=%

54

Linear Prediction Spectrogram

L=81, R=3, N=1000, 
40 db dynamic range
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55

Comparison to Other Spectrum 
Analysis Methods

Spectra of synthetic 
vowel /IY/

(a) Narrowband 
spectrum using 
40 msec window

(b) Wideband 
spectrum using a 
10 msec window

(c) Cepstrally 
smoothed 
spectrum

(d) LPC spectrum 
from a 40 msec 
section using a 
p=12 order LPC 
analysis 56

Comparison to Other Spectrum 
Analysis Methods

Natural speech spectral 
estimates using cepstral 
smoothing (solid line) and linear 
prediction analysis (dashed 
line).

Note the fewer (spurious) peaks 
in the LP analysis spectrum 
since LP used p=12 which 
restricted the spectral match to 
a maximum of 6 resonance 
peaks.

Note the narrow bandwidths of 
the LP resonances versus the 
cepstrally smoothed 
resonances.

57

Selective Linear Prediction

1

2

 it is possible to apply LP methods to selected parts of spectrum
    - 0-4 kHz for voiced sounds use a predictor of order 
    - 4-8 kHz for unvoiced sounds  use a predictor of order 
 the key id

•
⇒

⇒

•

p
p

{ } { }
0 5

2 2 0

2
2

2 2

ea is to map the frequency region { , } linearly to { ,. }
   or, equivalently, the region ,  maps linearly to ,  via

the transformation

=

 we must modify the calculation 

π π π

ω π
ω π

π π
−′ ⋅
−

•

A B

A B

A
B

B A

f f

f f

f
f

f f

21
2 ˆ

for the autocorrelation to give:

        ( ) | ( ) |
π

ω ω

π

ω
π

′ ′

−

′ ′= ∫ j j m
nR m S e e d

Selective Linear Prediction

58

• 0-5 kHz region modeled 
using p1=14

• 5-10 kHz region modeled 
using p2=5

• discontinuity in model 
spectra at 5 kHz

• 0-10 kHz region modeled 
using p=28

•no discontinuity in model 
spectra at 5 kHz

59

Solutions of LPC Equations

Covariance Method (Cholesky 
Decomposition Method)

60

LPC Solutions-Covariance Method

1

0 1 2ˆ ˆ

ˆ

 for the covariance method we need to solve the matrix equation

         ( , ) ( , ), , ,...,

(in matrix notation)
  is a positive definite, symmetric matrix with ( , ) element 

α φ φ

φα ψ
φ φ

=

•

= =

=
•

∑
p

k n n
k

n

i k i i p

i j
0ˆ

t

( , ),  
  and  and  are column vectors with elements  and ( , )
 the solution of the matrix equation is called the Cholesky 

  decomposition, or square root method

        =VDV ; V lower triangula

α ψ α φ

φ

•

=

i n

i j
i

r matrix with 1's on the main diagonal 
        D=diagonal matrix
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61

LPC Solutions-Covariance Method

1

1

1

1 1

1

ˆ

ˆ

 can readily determine elements of V and D by solving for ( , ) elements 
   of the matrix equation, as follows

        ( , ) ,

 giving

        ( , ) ,

φ

φ

=

−

=

•

= ≤ ≤ −

•

= − ≤ ≤

∑

∑

j

ik k jkn
k

j

ij j ik k jkn
k

i j

i j V d V j i

V d i j V d V j

1

1
2

1

1

1

2

11

ˆ

ˆ

ˆ

 and for the diagonal elements

        ( , )

 giving

        ( , ) ,

 with
        ( , )

φ

φ

φ

=

−

=

−

•

=

•

= − ≥

•
=

∑

∑ ik

i

ik k ikn
k

i

i kn
k

n

i

i i V d V

d i i V d i

d
62

Cholesky Decomposition Example

11 21 31 41

21 22 32 42

31 32 33 43

41 42 34 44

1

21 2

31 32 3

41 42 43 4

4

1 0 0 0 0 0 0
1 0 0 0 0 0

1 0 0 0 0
1 0 0 0

ˆ consider example with , and matrix elements ( , )φ φ

φ φ φ φ
φ φ φ φ
φ φ φ φ
φ φ φ φ

• = =

⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

ijnp i j

d
V d
V V d
V V V d

21 31 41

32 42

43

1
0 1
0 0 1
0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

V V V
V V

V

63

Cholesky Decomposition Example

21

1 21 31 41 2 32 42 3 43 4

1 11

21 1 21 31 1 31 41 1 41

21 21 1 31 31 1 41 41 1
2

2 22 1

32 2 32 31 1 21 32 32 31 1 2

 solve matrix for , , , ,
step 1

step 2

st

, , , , ,

    ; ;
/ ; / ; /

        e 3 p  

φ
φ φ φ

φ φ φ

φ

φ φ

•

=

= = =

= = =

= −

= − ⇒ = −

d V V V d V V d V d
d

V d V d V d
V d V d V d

d V d

V d V d V V V d V( )
( )

1 2

42 2 42 41 1 21 42 42 41 1 21 2

3 43 4

step

/

/
 iterate procedure to solve for , ,

4φ φ= − ⇒ = −

•

d

V d V d V V V d V d

d V d

64

LPC Solutions-Covariance Method

t

t

t 1

 now need to solve for using a 2-step procedure

              VDV
 writing this as

              VY=  with

DV or

        V D
 from V (which is now known) solve for column vector Y 

  using a 

α

α ψ

ψ

α

α −

•

=
•

=

=
•

Y

Y

1

1

1 1

2

simple recursion of the form

        = ,  

 with initial condition
              

ψ

ψ

−

=

− ≥ ≥

•
=

∑
i

i i ij j
j

Y V Y p i

Y

65

LPC Solutions-Covariance Method

1

1 1

1
1

 now can solve for  using the recursion

             / ,

 with initial condition
             /

 calculation proceeds backwards from  
  down to 

α

α α

α

= +

•

= − ≤ ≤ −

•
=

• = −
=

∑
p

i i i ji j
j i

p p p

Y d V i p

Y d

i p
i

66

Cholesky Decomposition Example

1 1

21 2 2

31 32 3 3

41 42 43 4 4

1 4

1 1

2 2 21 1

3 3 31 1 32 2

4

1 0 0 0
1 0 0

1 0
1

continu ing the exam ple w e so lve for Y

 first so lv ing for  w e get
       

ψ
ψ
ψ
ψ

ψ
ψ
ψ

•

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦
• −

=

= −

= − −

Y
V Y
V V Y
V V V Y

Y Y
Y
Y V Y
Y V Y V Y
Y 4 41 1 42 2 43 3ψ= − − −V Y V Y V Y
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Cholesky Decomposition Example

1 1 1 1 121 31 41

2 2 2 2 232 42

3 3 3 3 343

4 4 4 4 4

1 0 0 01
0 1 0 00 1
0 0 1 00 0 1
0 0 0 10 0 0 1

 next solve for  from equation
/ /

/ /
/ /

/ /
 givi

α
α
α
α
α

•

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

•

d Y Y dV V V
d Y Y dV V

d Y Y dV
d Y Y d

4 4 4

3 3 3 43 4

2 2 2 32 3 42 4

1 1 1 21 2 31 3 41 4

ng the results
        /

/
/
/

 completing the solution

α
α α
α α α
α α α α

=

= −

= − −

= − − −

•

Y d
Y d V
Y d V V
Y d V V V

68

Covariance Method Minimum Error

1

1 1

1

2

0 0 0

0 0

0 0

0 0

ˆ ˆ ˆ

ˆ

ˆ ˆ

ˆ

 the minimum mean squared error can be written in the form

             ( , ) ( , )

( , )

 since  can write this as

              ( , )

( , ) /

φ α φ

φ α ψ

α

φ

φ

=

− −

−

•

= −

= −

• =

= −

= −

∑
p

kn n n
k
t

n
t t

t
n n

k kn
k

E k

Y D V

E Y D Y

Y d
1

ˆ this computation for  can be used for all values of LP order from
  1 to can understand how LP order reduces mean-squared error

=

•

⇒

∑
p

nE
p

69 70

Solutions of LPC Equations

Autocorrelation Method via 
Levinson-Durbin Algorithm

71

Levinson-Durbin Algorithm 1

1

1

ˆ)

[| |] [ ] 1

[ ]

 Autocorrelation equations (at each frame :

     

  is a positive definite symmetric Toeplitz matrix
 The set of optimum predictor coefficients satisfy:

     

p

k
k

k
k

n

R i k R i i p

R i

α

α

=

=

− = ≤ ≤

−

∑

�

�

�

Rα = r
R

( )

1

[| |] 0, 1

[0] [ ]

 with minimum mean-squared prediction error of:

     

p

p
p

k
k

R i k i p

R R k Eα
=

− = ≤ ≤

− =

∑

∑

�

72

Levinson-Durbin Algorithm 2

( )
1
( )
2

1[0] [1] [2] ... [ ]
[1] [0] [1] ... [ 1]
[2] [1] [0] ... [ 2]
. . . . .
[ ] [ 1] [ 2] ... [0]

 By combining the last two equations we get a larger matrix 
equation of the form:

p

p

R R R R p
R R R R p
R R R R p

R p R p R p R

α
α

⎡ ⎤
⎢ ⎥ −−⎢ ⎥

−⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

�

( )

( )

0
0

. .
0

1) ( 1) expanded ( x matrix is still Toeplitz and can be solved iteratively
by incorporating new correlation value at each iteration and
solving for next

p

p
p

E

p p

α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

+ +�

 higher order predictor in terms of new correlation 
value and previous predictor
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Levinson-Durbin Algorithm 3

( 1) ( 1) ( 1) ( 1)

( ) ( ) ( )

( 1)
,

( 1)

th st

i i i i

i i i

st

i i
R E

R E
i

α α

α

− − − −

−

=

=

−

�

�

 Show how  order solution can be derived from  
order solution; i.e., given  the solution to 
we derive solution to 
 The  solution can be expres

( 1)

( 1)
1
( 1)
2

( 1)
1

1[0] [1] [2] ... [ 1]
[1] [0] [1] ... [ 2] 0
[2] [1] [0] ... [ 3] 0

.. . . . . .
[ 1] [ 2] [ 3] ... [0] 0

i

i

i

i
i

R R R R i E
R R R R i
R R R R i

R i R i R i R

α
α

α

−

−

−

−
−

− ⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥ −− ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ − =−
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ −− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

sed as:
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Levinson-Durbin Algorithm 4

( 1) ( )

( 1)

[0] [1] [2] ... [ ]
[1] [0] [1] ... [ 1]
[2] [1] [0] ... [ 2]
. . . ... .

[ 1] [ 2] [ 3]

 Appending a 0 to vector  and multiplying by the matrix  gives
a new set of  equations of the form:

i iR
i

R R R R i
R R R R i
R R R R i

R i R i R i

α −

+

−
−

− − −

�

( 1)

( 1)
1
( 1)
2

( 1)
1

( 1)

1
( 1) ( 1)

1

1
0
0

. .
... [1] 0

[ ] [ 1] [ 2] ... [0] 0

[ ] [ ] [ ] where  and  are introduced

i

i

i

i
i

i

i
i i

j
j

E

R
R i R i R i R

R i R i j R i

α
α

α
γ

γ α

−

−

−

−
−

−

−
− −

=

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ ⎢ ⎥

− − ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= − −∑�
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Levinson-Durbin Algorithm 5

[0] [1] [2] ... [ ]
[1] [0] [1] ... [ 1]
[2] [1

 Key step is that since Toeplitz matrix has special symmetry
we can reverse the order of the equations (first equation last,
last equation first), giving:

R R R R i
R R R R i
R R

−

�

( 1)

( 1)
1

( 1)
2

( 1)
1

( 1)

0
0

] [0] ... [ 2] 0
. . . ... . . .

[ 1] [ 2] [ 3] ... [1] 0
[ ] [ 1] [ 2] ... [0] 1

i

i
i
i

i

i

i

R R i

R i R i R i R
R i R i R i R E

γ
α
α

α

−

−
−
−
−

−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− −

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − − −
⎢ ⎥⎢ ⎥ ⎢ ⎥

− − ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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Levinson-Durbin Algorithm 6
( )

( 1)
1
( 1)
2( )

( 1)
1

1

.

0

 To get the equation into the desired form (a single
component in the vector ) we combine the two
sets of matrices (with a multiplicative factor ) giving:

α
α

α

−

−

−
−

⎡
⎢−⎢
−⎢
⎢
⎢
⎢−

⎣

�
i

i

i

i
i

i
i

E
k

R

( 1) ( 1)

( 1)
1

( 1)
2

( 1)
1

( 1) ( 1)

( 1)

0
0 0
0 0

. . .
0 0

1

 Choose  so tha

γ
α
α

α
γ

γ

− −

−
−
−
−

−

− −

−

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎥ ⎢ ⎥

− = −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥ ⎢ ⎥−
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
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i i

i
i
i

i
i i

i

i i

i

E

k k

E

1
( 1)

( 1)
1

( 1) ( 1)

[ ] [ ]

t vector on right has only a single
non-zero entry, i.e.,

     
α

γ

−
−

−
=

− −

− −
= =

∑
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i
ji

j
i i i

R i R i j
k

E E
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Levinson-Durbin Algorithm 7
( ) ( 1) ( 1) ( 1) 2

( 1)

(1 )

,

i i i i
i i

i
i th

E E k E k
k

i

γ

γ

− − −

−

= − = −

�

�

�

 The first element of the right hand side vector is now:
     
 The  parameters are called PARCOR coefficients.
 With this choice of  the vector of  order

( ) ( 1) ( 1)
1 1 1
( ) ( 1) ( 1)
2 2 2

( ) ( 1) ( 1)
1 1 1

( )

1 1 0

. . .

0 1

i i i
i

i i i
i

i

i i i
i i
i

i

k

α α α
α α α

α α α
α

− −
−

− −
−

− −
− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −

= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
−⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

�

 predictor
coefficients is:

     

 yielding the updati
( ) ( 1) ( 1)

( )

, 1, 2,...,i i i
j j i i j

i
i i

k j i

k

α α α

α

− −
−= − =

=

ng procedure
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Levinson-Durbin Algorithm 7
( )

( ) 2 2

1 1

1

[0] (1 ) [0] (1 )

[ ] [ ] / [0]

 The final solution for order  is:

 with prediction error

     

 If we use normalized autocorrelation coefficients:
     
 we get norma

p
j j

p p
p

m m
m m

p
j p

E E k R k

r k R k R

α α

= =

= ≤ ≤

= − = −

=

∏ ∏

�

�

�

�
( )

( ) ( ) 2

1 1
( )

1 [ ] (1 )
[0]

0 1 1 1

lized errors of the form:

     

 where  or 

i ii
i i

k m
k m

i
i

E r k k
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k

ν α

ν
= =

= = − = −

< ≤ − < <

∑ ∏
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Levinson-Durbin Algorithm

1

1 1

( ) ( )

( )

( ) ( )
( )

−

− − −

⇒ =

−

i i

i i
i

A z A z
k z A z
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Autocorrelation Example

1

2

0

1
1

1
2 2

1

2
0 1 1
1 0 2

0
1 0

1 0

0 1
0

( )

( )

( )

consider a simple  solution of the form
( ) ( ) ( )

  
( ) ( ) ( )

 with solution

        ( )
( ) / ( )

( ) / ( )

( ) ( )
( )

α
α

α

• =

⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
•

=
=

=

−
=

p
R R R
R R R

E R
k R R

R R

R RE
R
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Autocorrelation Example
2

2 2 2

2
2

2 2 2

2
1 2 2

2
1
2

2 2

2 0 1
0 1

2 0 1
0 1

1 0 1 2
0 1

( )

( )

( )
1

( )

( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

 with final coefficients

         

prediction error for predictor of order 

α

α

α α

α α

−
=

−

−
=

−
−

=
−

•

=

=

=i

R R Rk
R R

R R R
R R

R R R R
R R

E i
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Prediction Error as  a Function of p

1
1

0 0
[ ]

[ ] [ ]
α

=

= = −∑
p

n n
n k

kn n

E R kV
R R

Model order is usually determined
by the following rule of thumb:

Fs/1000 poles for vocal tract
2-4 poles for radiation
2 poles for glottal pulse
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Autocorrelation Method Properties

• mean-squared prediction error always non-zero
– decreases monotonically with increasing model order

• autocorrelation matching property
– model and data match up to order p

• spectrum matching property
– favors peaks of short-time FT

• minimum-phase property
– zeros of A(z) are inside the unit circle

• Levinson-Durbin recursion
– efficient algorithm for finding prediction coefficients
– PARCOR coefficients and MSE are by-products


