
1

mjb – June 10, 2021

1

Computer Graphics

The Message Passing Interface (MPI):
Parallelism on Distributed CPUs

http://mpi-forum.org
https://www.open-mpi.org/

mpi.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – June 10, 2021

2

Computer Graphics

http://mpi-forum.org
This is the definitive reference for the MPI standard. Go here if you
want to read the official specification, which, BTW, continues to evolve.

https://www.open-mpi.org/
This consortium formed later. This is the open source version of MPI.
If you want to start using MPI, I recommend you look here.
This is the MPI that the COE systems use

Why Two URLs?

https://www.open-mpi.org/doc/v4.0/
This URL is also really good – it is a link to all of the MPI man pages

1

2

2

mjb – June 10, 2021

3

Computer Graphics

The Open MPI Consortium

mjb – June 10, 2021

4

Computer Graphics

MPI: The Basic Idea

Network

• • •CPU

Memory

CPU

Memory

Programs on different CPUs coordinate computations by
passing messages between each other

Note: Each CPU in the MPI “cluster” must be prepared ahead of time by
having the MPI server code installed on it. Each MPI CPU must also have an

integer ID assigned to it (called its rank).

3

4

3

mjb – June 10, 2021

5

Computer Graphics

This paradigm is how modern supercomputers work!

The Texas Advanced Computing Center’s new Frontera
supercomputer, currently the 5th fastest in the word

mjb – June 10, 2021

6

Computer Graphics

How to SSH to the COE MPI Cluster

flip3 151% ssh submit-c.hpc.engr.oregonstate.edu

submit-c 142% module load slurm
submit-c 143% module load openmpi/3.1

ssh over to an MPI submission machine --
submit-a and submit-b will also work

Type these two lines right away
to set your paths correctly

BTW, you can find out more about the COE cluster here:
https://it.engineering.oregonstate.edu/hpc

“The College of Engineering HPC cluster is a heterogeneous mix of 202 servers providing
over 3600 CPU cores, over 130 GPUs, and over 31 TB total RAM. The systems
are connected via gigabit ethernet, and most of the latest servers also utilize a Mellanox
EDR InfiniBand network connection. The cluster also has access to 100TB global
scratch from the College of Engineering's Dell/EMC Isilon enterprise storage.”

5

6

4

mjb – June 10, 2021

7

Computer Graphics

Compiling and Running from the Command Line

% mpiexec -mca btl self,tcp -np 4 program

% mpicc -o program program.c . . .

% mpic++ -o program program.cpp . . .

of processors to use

or

C

C++

All distributed processors execute
the same program at the same time

Warning – use mpic++ and mpiexec !

Don’t use g++ and don’t run by just typing the name of the executable!

mjb – June 10, 2021

8

Computer Graphics

Running with a bash Batch Script

submit-c 143% sbatch submit.bash
Submitted batch job 258759

submit.bash:

#!/bin/bash
#SBATCH -J Heat
#SBATCH -A cs475-575
#SBATCH -p class
#SBATCH -N 8 # number of nodes
#SBATCH -n 8 # number of tasks
#SBATCH -o heat.out
#SBATCH -e heat.err
#SBATCH --mail-type=END,FAIL
#SBATCH --mail-user=joeparallel@cs.oregonstate.edu
module load openmpi/3.1
mpic++ heat.cpp -o heat -lm
mpiexec -mca btl self,tcp -np 4 heat

7

8

5

mjb – June 10, 2021

9

Computer Graphics

Auto-Notifications via Email

#SBATCH --mail-user=joeparallel@oregonstate.edu

You don’t have to ask for email notification, but if you do, please,
please, please be sure you get your email address right!

The IT people are getting real tired of fielding the bounced emails
when people spell their own email address wrong.

mjb – June 10, 2021

10

Computer Graphics

submit-c 143% sbatch submit.bash
Submitted batch job 258759

submit-c 144% scancel 258759

Use slurm’s scancel if your Job Needs to Be Killed

9

10

6

mjb – June 10, 2021

11

Computer Graphics

#include <mpi.h>

int
main(int argc, char *argv[])
{
• • •

MPI_Init(&argc, &argv);

• • •

MPI_Finalize();
return 0;

}

Setting Up and Finishing

You don’t need to process command line arguments if you don’t need to.
You can also call it as:

MPI_Init(NULL, NULL);

mjb – June 10, 2021

12

Computer Graphics

int numCPUs; // total # of cpus involved
int me; // which one I am

MPI_Comm_size(MPI_COMM_WORLD, &numCPUs);

MPI_Comm_rank(MPI_COMM_WORLD, &me);

A communicator is a collection of CPUs that are capable of sending messages to each other

Getting information about our place in the communicator:

Rank, i.e., which one am I?

MPI Follows a Single-Program-Multiple-Data (SPMD) Model

This requires MPI server
code getting installed on
all those CPUs. Only an
administrator can do this.

Size, i.e., how many altogether?

Oh, look, a
communicator

of deer!

Oh, look, a
communicator

of turkeys!

It is then each CPU’s job to figure out
what piece of the overall problem it is
responsible for and then go do it.

11

12

7

mjb – June 10, 2021

13

Computer Graphics

#include <stdio.h>
#include <math.h>
#include <mpi.h>

#define BOSS 0

int
main(int argc, char *argv[])
{

MPI_Init(&argc, &argv);

int numCPUs; // total # of cpus involved
int me; // which one I am

MPI_Comm_size(MPI_COMM_WORLD, &numCPUs);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

if(me == BOSS)
fprintf(stderr, "Rank %d says that we have a Communicator of size %d\n", BOSS, numCPUs);

else
fprintf(stderr, "Welcome from Rank %d\n", me);

MPI_Finalize();
return 0;

}

A First Test of MPI

mjb – June 10, 2021

14

Computer Graphics

submit-c 165% mpiexec -np 16 ./first
Welcome from Rank 13
Welcome from Rank 15
Welcome from Rank 3
Welcome from Rank 7
Welcome from Rank 5
Welcome from Rank 8
Welcome from Rank 9
Welcome from Rank 11
Rank 0 says that we have a Communicator of size 16
Welcome from Rank 1
Welcome from Rank 12
Welcome from Rank 14
Welcome from Rank 6
Welcome from Rank 2
Welcome from Rank 10
Welcome from Rank 4

submit-c 166% mpiexec -np 16 ./first
Welcome from Rank 1
Welcome from Rank 5
Welcome from Rank 7
Welcome from Rank 9
Welcome from Rank 11
Welcome from Rank 13
Welcome from Rank 15
Rank 0 says that we have a Communicator of size 16
Welcome from Rank 2
Welcome from Rank 3
Welcome from Rank 4
Welcome from Rank 6
Welcome from Rank 8
Welcome from Rank 12
Welcome from Rank 14
Welcome from Rank 10

submit-c 167% mpiexec -np 16 ./first
Welcome from Rank 9
Welcome from Rank 11
Welcome from Rank 13
Welcome from Rank 7
Welcome from Rank 1
Welcome from Rank 3
Welcome from Rank 10
Welcome from Rank 15
Welcome from Rank 4
Welcome from Rank 5
Rank 0 says that we have a Communicator of size 16
Welcome from Rank 2
Welcome from Rank 6
Welcome from Rank 8
Welcome from Rank 14
Welcome from Rank 12

submit-c 168% mpiexec -np 16 ./first
Welcome from Rank 13
Welcome from Rank 15
Welcome from Rank 7
Welcome from Rank 3
Welcome from Rank 5
Welcome from Rank 9
Welcome from Rank 11
Welcome from Rank 1
Welcome from Rank 12
Welcome from Rank 14
Welcome from Rank 4
Welcome from Rank 2
Rank 0 says that we have a Communicator of size 16
Welcome from Rank 8
Welcome from Rank 10
Welcome from Rank 6

13

14

8

mjb – June 10, 2021

15

Computer Graphics

So, we have a group (a “communicator”) of distributed processors.
How do they communicate about what work they are supposed to do?

Who am I?
Where am I?

What am I supposed to be doing?
Hello? Is anyone listening?

Example: You could coordinate the units of our DGX system using MPI

mjb – June 10, 2021

16

Computer Graphics

MPI_Bcast(array, count, type, src, MPI_COMM_WORLD);

A Good Place to Start:
MPI Broadcasting

Both the sender and receivers need to execute MPI_Bcast –
there is no separate receive function

Address of data to
send from if you
are the src node;
Address of the
data to receive
into if you are not

MPI_CHAR
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
• • •

rank of the CPU
doing the sending# elements

src node

≠ src nodes

15

16

9

mjb – June 10, 2021

17

Computer Graphics

int numCPUs;
int me;
float k_over_rho_c; // the BOSS node will know this value, the others won’t (yet)

#define BOSS 0

MPI_Comm_size(MPI_COMM_WORLD, &numCPUs); // how many are in this communicator
MPI_Comm_rank(MPI_COMM_WORLD, &me); // which one am I?
. . .
if(me == BOSS)
{

<< read k_over_rho_c from the data file >>
}

MPI_Bcast(&k_over_rho_c, 1, MPI_FLOAT, BOSS, MPI_COMM_WORLD); // send if BOSS, and receive if not

MPI Broadcast Example

 
1 1

2

2i i i
i

T T Tk
T t

C x
 

    
       

This is our heat transfer equation
from before. Clearly, every CPU
will need to know this value.

src node

≠ src nodes

I am the BOSS: this identifies this call as a send

mjb – June 10, 2021

18

Computer Graphics

Confused? Look at this Diagram

Both the sender and receivers need to execute MPI_Bcast –
there is no separate receive function

Executable code k_over_rho_c (set)

Executable code k_over_rho_c (being set)

Executable code k_over_rho_c (being set)

Executable code k_over_rho_c (being set)

Executable code k_over_rho_c (being set)

Node #BOSS:

All Nodes that are not #BOSS:

17

18

10

mjb – June 10, 2021

19

Computer Graphics

How Does this Work?
Think Star Trek Wormholes!

mjb – June 10, 2021

20

Computer Graphics

MPI_Send(array, numToSend, type, dst, tag, MPI_COMM_WORLD);

MPI_CHAR
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
• • •

rank of the CPU
to send to

Rules:

• One message from a specific src to a specific dst cannot overtake a previous message from the
same src to the same dst.

• MPI_Send() blocks until the transfer is far enough along that array can be destroyed or re-used.

• There are no guarantees on order from different src’s .

Sending Data from One Source CPU to One Destination CPU

An integer to differentiate
this transmission from any
other transmission (be sure
this is unique!)

address of data to send from

elements
(note: this is the number
of elements, not the
number of bytes!)

src node dst node

19

20

11

mjb – June 10, 2021

21

Computer Graphics

MPI_Recv(array, maxCanReceive, type, src, tag, MPI_COMM_WORLD, &status);

Rules:

• The receiver blocks waiting for data that matches what it declares to be looking for

• One message from a specific src to a specific dst cannot overtake a previous message from
the same src to the same dst

• There are no guarantees on the order from different src’s

• The order from different src’s could be implied in the tag

• status is type MPI_Status – the “&status” can be replaced with MPI_STATUS_IGNORE

Receiving Data in a Destination CPU from a Source CPU

MPI_CHAR
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
• • •

Rank of the CPU
we are expecting
to get a
transmission from

An integer to differentiate what
transmission we are looking for
with this call (be sure this
matches what the sender is
sending!). I like to use chars.

address of data to receive into
Type = MPI_Status

elements we can
receive, at most

src node dst node

mjb – June 10, 2021

22

Computer Graphics

int numCPUs;
int me;
#define MYDATA_SIZE 128
char mydata[MYDATA_SIZE];
#define BOSS 0

MPI_Comm_size(MPI_COMM_WORLD, &numCPUs);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

if(me == BOSS) // the primary
{

for(int dst = 0; dst < numCPUs; dst++)
{

if(dst != BOSS)
{

char *InputData = “Hello, Beavers!”;
MPI_Send(InputData, strlen(InputData)+1, MPI_CHAR, dst, ‘B’, MPI_COMM_WORLD);

}
}

}
else // a secondary
{

MPI_Recv(myData, MYDATA_SIZE, MPI_CHAR, BOSS, ‘B’, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf(“ ‘%s’ from rank # %d\n”, in, me);

}

Example

Remember, this identical code runs on all CPUs:

Be sure the receiving tag matches
the sending tag

You are highly discouraged from sending to yourself. Because both the send and receive
are capable of blocking, the result could be deadlock.

The tag to send

The tag to expect

21

22

12

mjb – June 10, 2021

23

Computer Graphics

Look at this Diagram

Executable code Input Data

Executable code MyData

Executable code MyData

Executable code MyData

Executable code MyData

Destinations

Source

mjb – June 10, 2021

24

Computer Graphics

MPI_Send()

MPI
Transmission

Buffer

MPI_Recv()

MPI
Transmission

Buffer

How does MPI let the Sender perform an MPI_Send() even if
the Receivers are not ready to MPI_Recv()?

MPI_Send() blocks until the transfer is far enough along that the array
can be destroyed or re-used.

Sender Receiver

23

24

13

mjb – June 10, 2021

25

Computer Graphics

#define NUMELEMENTS ?????
int numCPUs;
int me;
#define BOSS 0

MPI_Comm_size(MPI_COMM_WORLD, &numCPUs);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

int localSize = NUMELEMENTS / numCPUs; // assuming it comes out evenly
float *myData = new float [localSize];

if(me == BOSS) // the sender
{

float *InputData = new float [NUMELEMENTS];
<< read the full input data into InputData from disk >>
for(int dst = 0; dst < numCPUs; dst++)
{

if(dst != BOSS)
{

MPI_Send(&InputData[dst*localSize], localSize, MPI_FLOAT, dst, 0, MPI_COMM_WORLD);
}

}
}
else // a receiver
{

MPI_Recv(myData, localSize, MPI_FLOAT, BOSS, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
// do something with this subset of the data

}

Another Example

You typically don’t send the entire workload to each dst – you just send part of it, like this:

mjb – June 10, 2021

26

Computer Graphics

Another Example

You typically don’t send the entire workload to each dst – you just send part of it, like this:

Executable code Input Data

Executable code MyData

Executable code MyData

Executable code MyData

Executable code MyData

Destinations

Source

25

26

14

mjb – June 10, 2021

27

Computer Graphics

In Distributed Computing, You Often Hear About These Design Patterns

Gather

Broadcast

Scatter

mjb – June 10, 2021

28

Computer Graphics

Scatter and Gather Usually Go Together

Gather

Scatter

Note surprisingly, this is referred to as Scatter/Gather

27

28

15

mjb – June 10, 2021

29

Computer Graphics

MPI_Scatter(snd_array, snd_count, snd_type, rcv_array, rcv_count, rcv_type, src, MPI_COMM_WORLD);

MPI Scatter

Scatter

MPI_CHAR
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
• • •

MPI_CHAR
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
• • •

elements to send
per-processor

elements to receive
per-processor

Take a data array, break it into ~equal portions, and send it to each CPU

Both the sender and receivers need to execute MPI_Scatter.
There is no separate receive function

The total large array
to split up

Local array to store
this processor’s

piece in

This is who is doing
the sending –

everyone else is
receiving

mjb – June 10, 2021

30

Computer Graphics

MPI_Gather(snd_array, snd_count, snd_type, rcv_array, rcv_count, rcv_type, dst, MPI_COMM_WORLD);

MPI Gather

Gather

MPI_CHAR
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
• • •

MPI_CHAR
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
• • •

elements to send
back per-processor

The total large array
to put the pieces

back into

elements to return
per-processor

This is who is doing
the receiving –

everyone else is
sending

Local array that this
processor is
sending back

Both the sender and receivers need to execute MPI_Gather.
There is no separate receive function

29

30

16

mjb – June 10, 2021

31

Computer Graphics

Remember This? It’s Baaaaaack as a complete
Scatter/Gather Example

CPU #0 CPU #1 CPU #2 CPU #3

The Compute : Communicate Ratio still applies, except that it is even more important now
because there is much more overhead in the Communicate portion.

This pattern of breaking a big problem up into pieces, sending them to different CPUs,
computing on the pieces, and getting the results back is very common. That’s why MPI has
its own scatter and gather functions.

mjb – June 10, 2021

32

Computer Graphics

heat.cpp, I

#include <stdio.h>
#include <math.h>
#include <mpi.h>

const float RHO = 8050.;
const float C = 0.466;
const float K = 20.;
float k_over_rho_c = K / (RHO*C);// units of m^2/sec NOTE: this cannot be a const!
// K / (RHO*C) = 5.33x10^-6 m^2/sec

const float DX = 1.0;
const float DT = 1.0;

#define BOSS 0

#define NUMELEMENTS (8*1024*1024)
#define NUM_TIME_STEPS 4
#define DEBUG false

float * NextTemps; // per-processor array to hold computer next-values
int NumCpus; // total # of cpus involved
int PPSize; // per-processor local array size
float * PPTemps; // per-processor local array temperature data
float * TempData; // the overall NUMELEMENTS-big temperature data

void DoOneTimeStep(int);

31

32

17

mjb – June 10, 2021

33

Computer Graphics

int
main(int argc, char *argv[])
{

MPI_Init(&argc, &argv);

int me; // which one I am

MPI_Comm_size(MPI_COMM_WORLD, &NumCpus);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

// decide how much data to send to each processor:
PPSize = NUMELEMENTS / NumCpus; // assuming it comes out evenly
PPTemps = new float [PPSize]; // all processors now have this uninitialized Local array
NextTemps = new float [PPSize]; // all processors now have this uninitialized local array too

// broadcast the constant:
MPI_Bcast((void *)&k_over_rho_c, 1, MPI_FLOAT, BOSS, MPI_COMM_WORLD);

heat.cpp, II

mjb – June 10, 2021

34

Computer Graphics

if(me == BOSS) // this is the data-creator
{

TempData = new float [NUMELEMENTS];
for(int i = 0; i < NUMELEMENTS; i++)

TempData[i] = 0.;
TempData[NUMELEMENTS/2] = 100.;

}

MPI_Scatter(TempData, PPSize, MPI_FLOAT, PPTemps, PPSize, MPI_FLOAT,
BOSS, MPI_COMM_WORLD);

heat.cpp, III

33

34

18

mjb – June 10, 2021

35

Computer Graphics

// all the PPTemps arrays have now been filled
// do the time steps:

double time0 = MPI_Wtime();

for(int steps = 0; steps < NUM_TIME_STEPS; steps++)
{

// do the computation for one time step:
DoOneTimeStep(me);

// ask for all the data:
#ifdef WANT_EACH_TIME_STEPS_DATA

MPI_Gather(PPTemps, PPSize, MPI_FLOAT, TempData, PPSize, MPI_FLOAT,
BOSS, MPI_COMM_WORLD);

#endif
}

#ifndef WANT_EACH_TIME_STEPS_DATA
MPI_Gather(PPTemps, PPSize, MPI_FLOAT, TempData, PPSize, MPI_FLOAT,

BOSS, MPI_COMM_WORLD);
#endif

double time1 = MPI_Wtime();

heat.cpp, IV

mjb – June 10, 2021

36

Computer Graphics

if(me == BOSS)
{

double seconds = time1 - time0;
double performance =

(double)NUM_TIME_STEPS * (double)NUMELEMENTS / seconds / 1000000.;
// mega-elements computed per second

fprintf(stderr, "%3d, %10d, %8.2lf\n", NumCpus, NUMELEMENTS, performance);
}

MPI_Finalize();
return 0;

}

heat.cpp, V

35

36

19

mjb – June 10, 2021

37

Computer Graphics

// read from PerProcessorData[], write into NextTemps[]
void
DoOneTimeStep(int me)
{

MPI_Status status;

// send out the left and right end values:
// (the tag is from the point of view of the sender)
if(me != 0) // i.e., if i'm not the first group on the left
{

// send my PPTemps[0] to me-1 using tag 'L'
MPI_Send(&PPTemps[0], 1, MPI_FLOAT, me-1, 'L', MPI_COMM_WORLD);
if(DEBUG) fprintf(stderr, "%3d sent 'L' to %3d\n", me, me-1);

}

if(me != NumCpus-1) // i.e., not the last group on the right
{

// send my PPTemps[PPSize-1] to me+1 using tag 'R'
MPI_Send(&PPTemps[PPSize-1], 1, MPI_FLOAT, me+1, 'R', MPI_COMM_WORLD);
if(DEBUG) fprintf(stderr, "%3d sent 'R' to %3d\n", me, me+1);

}

DoOneTimeStep, I

mjb – June 10, 2021

38

Computer Graphics

float left = 0.;
float right = 0.;

if(me != 0) // i.e., if i'm not the first group on the left
{

// receive my "left" from me-1 using tag 'R'
MPI_Recv(&left, 1, MPI_FLOAT, me-1, 'R', MPI_COMM_WORLD, &status);
if(DEBUG) fprintf(stderr, "%3d received 'R' from %3d\n", me, me-1);

}

if(me != NumCpus-1) // i.e., not the last group on the right
{

// receive my "right" from me+1 using tag 'L'
MPI_Recv(&right, 1, MPI_FLOAT, me+1, 'L', MPI_COMM_WORLD, &status);
if(DEBUG) fprintf(stderr, "%3d received 'L' from %3d\n", me, me+1);

}

DoOneTimeStep, II

37

38

20

mjb – June 10, 2021

39

Computer Graphics

1 sent 'L' to 0
1 sent 'R' to 2
2 sent 'L' to 1
2 sent 'R' to 3
2 received 'R' from 1
0 sent 'R' to 1
0 received 'L' from 1
1 received 'R' from 0
1 received 'L' from 2
3 sent 'L' to 2
3 received 'R' from 2
2 received 'L' from 3

Sharing Values Across the Boundaries

mjb – June 10, 2021

40

Computer Graphics

1D Compute-to-Communicate Ratio

Intraprocessor computing

Interprocessor communication

Compute : Communicate ratio = N : 2

where N is the number of compute cells per processor

In the above drawing, Compute : Communicate is 4 : 2

39

40

21

mjb – June 10, 2021

41

Computer Graphics

// first element on the left (0):
{

float dtemp = (k_over_rho_c *
(left - 2.*PPTemps[0] + PPTemps[1]) / (DX*DX)) * DT;

NextTemps[0] = PPTemps[0] + dtemp;
}

// all the nodes in the middle:
for(int i = 1; i < PPSize-1; i++)
{

float dtemp = (k_over_rho_c *
(PPTemps[i-1] - 2.*PPTemps[i] + PPTemps[i+1]) / (DX*DX)) * DT;

NextTemps[i] = PPTemps[i] + dtemp;
}

// last element on the right (PPSize-1):
{

float dtemp = (k_over_rho_c *
(PPTemps[PPSize-2] - 2.*PPTemps[PPSize-1] + right) / (DX*DX)) * DT;

NextTemps[PPSize-1] = PPTemps[PPSize-1] + dtemp;
}

DoOneTimeStep, III

mjb – June 10, 2021

42

Computer Graphics

// update the local dataset:

for(int i = 0; i < PPSize; i++)
{

PPTemps[i] = NextTemps[i];
}

}

DoOneTimeStep, IV

41

42

22

mjb – June 10, 2021

43

Computer Graphics

M
e

g
a-

E
le

m
en

ts
 C

o
m

p
u

te
d

 P
e

r
S

ec
o

n
d

Number of Elements

Number of
Processors

MPI Performance

mjb – June 10, 2021

44

Computer Graphics

M
e

g
a-

E
le

m
en

ts
 C

o
m

p
u

te
d

 P
e

r
S

ec
o

n
d

Number of Elements Number of
Processors

Low Dataset-Size MPI Performance

43

44

23

mjb – June 10, 2021

45

Computer Graphics

M
e

g
a-

E
le

m
en

ts
 C

o
m

p
u

te
d

 P
e

r
S

ec
o

n
d

Number of Processors
Number of
Elements

MPI Performance

mjb – June 10, 2021

46

Computer Graphics

From: Peter Johnsen, Mark Straka, Melvyn Shapiro, Alan Norton, Thomas Galarneau,
Petascale WRF Simulation of Hurricane Sandy.

Using MPI and OpenMP on 13,680 nodes (437,760 cores) of the
Cray XE6 at NCSA at the University of Illinois

45

46

24

mjb – June 10, 2021

47

Computer Graphics

MPI_Reduce(partialResult, globalResult, count, type, operator, dst, MPI_COMM_WORLD);

MPI_MIN
MPI_MAX
MPI_SUM
MPI_PROD
MPI_MINLOC
MPI_MAXLOC
MPI_LAND
MPI_BAND
MPI_LOR
MPI_BOR
MPI_LXOR
MPI_BXOR

MPI Reduction

MPI_CHAR
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
• • •

Who is given the
final answer

Both the sender and receivers need to execute MPI_Reduce.
There is no separate receive function

Place to store the full
result on the dst CPU

Where the partial
result is stored on
each CPU

Number of
elements in the
partial result

+ + +

Reduction

This really should be called
Scatter/Gather/Reduction

mjb – June 10, 2021

48

Computer Graphics

MPI Reduction Example

+ + +

Reduction

// gratuitous use of a reduce -- average all the temperatures:

float partialSum = 0.;
for(int i = 0; i < PPSize; i++)

partialSum += PPTemps[i];

float globalSum = 0.;
MPI_Reduce(&partialSum, &globalSum, 1, MPI_FLOAT, MPI_SUM, BOSS, MPI_COMM_WORLD);

if(me == BOSS)
fprintf(stderr, "Average temperature = %f\n", globalSum/(float)NUMELEMENTS);

47

48

25

mjb – June 10, 2021

49

Computer Graphics

MPI Barriers

MPI_Barrier(MPI_COMM_WORLD);

Barrier
w

a
it w
a

it w
a

it

w
a

it

w
a

it

0 1 2 3 4 5

All CPUs must execute the call to MPI_Barrier() before any of the CPUs can move past it.
That is, each CPU’s MPI_Barrier() blocks until all CPUs execute a call to MPI_Barrier().

Distributed Processors:

Time

mjb – June 10, 2021

50

Computer Graphics

MPI Derived Types

Idea: In addition to types MPI_INT, MPI_FLOAT, etc., allow the creation of new MPI types so that you can
transmit an “array of structures”.

Reason: There is significant overhead with each transmission. Better to send one entire array of
structures instead of sending several arrays separately.

MPI_Type_create_struct(count, blocklengths, displacements, types, datatype);

struct point
{

int pointSize;
float x, y, z;

};

MPI_Datatype MPI_POINT;
int blocklengths[] = { 1, 1, 1, 1 };
int displacements[] = { 0, 4, 8, 12 };
MPI_type types[] = { MPI_INT, MPI_FLOAT, MPI_FLOAT, MPI_FLOAT);

MPI_Type_create_struct(4, blocklengths, displacements, types, &MPI_POINT);

You can now use MPI_POINT everywhere you could have used MPI_INT, MPI_FLOAT,etc.

49

50

26

mjb – June 10, 2021

51

Computer Graphics

MPI Timing

Returns the resolution of the clock, in seconds.

double MPI_Wtick();

Warning: the clocks on the different CPUs are not guaranteed to be synchronized!

Returns the time, in seconds, since “some time in the past”.

double MPI_Wtime();

mjb – June 10, 2021

52

Computer Graphics

Autocorrelation – a Piece of the Original Signal

51

52

27

mjb – June 10, 2021

53

Computer Graphics

NUMELEMENTS

Divide NUMELEMENTS into pieces for the NumCpus
(this is what MPI_Scatter does)

But, in the Autocorrelation case, we need MAXSHIFTS more
data values for each CPU

Autocorrelation – More than Just a Scatter

mjb – June 10, 2021

54

Computer Graphics

Shift = 0

Shift = 2

Shift = 1

Shift = 3

Shift = MAXSHIFTS-1

Autocorrelation – How the Shifting Works

53

54

