
Introduction to Streams
Univ. of Pennsylvania CIS 565, Nov 2020
Slides by Steve Rennich
Presented by Tim Kaldewey tkaldewey@nvidia.com
NVIDIA - Developer Technology

Streams and Concurrency

Concurrency
The ability to perform multiple operations simultaneously

Compute kernels on the GPU
Data transfer to device (H2D)
Data transfer to host (D2H)
Operations on the CPU

Enables improved performance

Streams
How concurrency is achieved

Simple Accelerator Model

Tasks are offloaded from CPU to GPU

CPU GPU

Simple Accelerator Model

Tasks are offloaded from CPU to GPU

CPU GPU

1. Setup data on CPU
2. Copy data from CPU to GPU (H2D)
3. Launch kernel on GPU
4. Copy result from GPU to CPU (D2H)
5. Repeat …

Simple Accelerator Model

Tasks are offloaded from CPU to GPU

CPU GPU

1. Setup data on CPU
2. Copy data from CPU to GPU (H2D)
3. Launch kernel on GPU
4. Copy result from GPU to CPU (D2H)
5. Repeat …

Simple Accelerator Model

Tasks are offloaded from CPU to GPU

CPU GPU

1. Setup data on CPU
2. Copy data from CPU to GPU (H2D)
3. Launch kernel on GPU
4. Copy result from GPU to CPU (D2H)
5. Repeat …

Simple Accelerator Model

Tasks are offloaded from CPU to GPU

CPU GPU

1. Setup data on CPU
2. Copy data from CPU to GPU (H2D)
3. Launch kernel on GPU
4. Copy result from GPU to CPU (D2H)
5. Repeat …

Simple Accelerator Model

Tasks are offloaded from CPU to GPU

CPU GPU

1. Setup data on CPU
2. Copy data from CPU to GPU (H2D)
3. Launch kernel on GPU
4. Copy result from GPU to CPU (D2H)
5. Repeat …

Simple Processing Flow Timeline

CPU
H2D
D2H
GPU

time

Simple Processing Flow Timeline

CPU
H2D
D2H
GPU 1

1
1

1

time

Simple Processing Flow Timeline

CPU
H2D
D2H
GPU 1

1
1

1
2

2
2

2

time

Simple Processing Flow Timeline

CPU
H2D
D2H
GPU 1

1
1

1
2

2
2

2
3

3
3

3

time

Simple Processing Flow Timeline

CPU
H2D
D2H
GPU 1

1
1

1
2

2
2

2
3

3
3

3
4

4
4

4

time

Simple Processing Flow Timeline

CPU
H2D
D2H
GPU 1

1
1

1
2

2
2

2
3

3
3

3
4

4
4

GPU Idle

4

time

Simple Processing Flow Timeline

CPU
H2D
D2H
GPU 1

1
1

1
2

2
2

2
3

3
3

3
4

4
4

GPU Idle

CPU Idle

4

time

Simple Processing Flow Timeline

Computing resources are poorly utilized
We can use concurrency to improve utilization

CPU
H2D
D2H
GPU 1

1
1

1
2

2
2

2
3

3
3

3
4

4
4

GPU Idle

CPU Idle

4

time

1

1
1

1
2

2
2

2
3

3
3

3
4

4
4

4

Concurrent Processing Flow Timeline

CPU
H2D
D2H
GPU

Efficient utilization of all computing resources

time

1

1
1

1
2

2
2

2
3

3
3

3
4

4
4

4

Concurrent Processing Flow Timeline

CPU
H2D
D2H
GPU

1

Efficient utilization of all computing resources

time

1

1
1

1
2

2
2

2
3

3
3

3
4

4
4

4

Concurrent Processing Flow Timeline

CPU
H2D
D2H
GPU

1 2

Efficient utilization of all computing resources

1

time

1

1
1

1
2

2
2

2
3

3
3

3
4

4
4

4

Concurrent Processing Flow Timeline

CPU
H2D
D2H
GPU

1 2 3

Efficient utilization of all computing resources

1 2

1

time

1

1
1

1
2

2
2

2
3

3
3

3
4

4
4

4

Concurrent Processing Flow Timeline

CPU
H2D
D2H
GPU

1 2 3 4

Efficient utilization of all computing resources

1 2 3

1

1 2

time

1

1
1

1
2

2
2

2
3

3
3

3
4

4
4

4

Concurrent Processing Flow Timeline

CPU
H2D
D2H
GPU

1 2 3 4

Efficient utilization of all computing resources

1 2 3 4

1 2

1 2 3

time

1

1
1

1
2

2
2

2
3

3
3

3
4

4
4

4

Concurrent Processing Flow Timeline

CPU
H2D
D2H
GPU

1 2 3 4

Efficient utilization of all computing resources

1 2 3 4

1 2 3

1 2 3 4

time

1

1
1

1
2

2
2

2
3

3
3

3
4

4
4

4

Concurrent Processing Flow Timeline

CPU
H2D
D2H
GPU

1 2 3 4

Efficient utilization of all computing resources

1 2 3 4

1 2 3 4

1 2 3 4

time

1

1
1

1
2

2
2

2
3

3
3

3
4

4
4

4

Concurrent Processing Flow Timeline

CPU
H2D
D2H
GPU

1 2 3 4

Efficient utilization of all computing resources

1 2 3 4

1 2 3 4

1 2 3 4

time

performance
improvement

Streams and Concurrency

Concurrency
The ability to perform multiple operations simultaneously

Compute kernels on the GPU
Data transfer to device (H2D)
Data transfer to host (D2H)
Operations on the CPU

Enables improved performance

Streams
How concurrency is achieved

Enabling Concurrency with Streams

CUDA Streaming Model

Stream: A sequence of operations that execute in
issue-order (FIFO)

All transfers and kernels are placed into a stream
Operations within a stream will not overlap
Operations in different streams may run concurrently
Operations from different streams may be interleaved

Stream is the 4th launch parameter
kernel <<< blocks, threads, smem , stream >>> ()

Default Stream

Stream used when no stream is specified
a.k.a. Stream ‘0’
a.k.a. ‘Null Stream’

Completely synchronous w.r.t. host and device
As if a cudaDeviceSynchronize() was inserted before and after every operation

Exceptions – asynchronous w.r.t. host
Kernel launches
cudaMemcpy*Async
cudaMemset*Async
cudaMemcpy within the same device

Requirements for concurrency

Operations must be in different, non-default, streams

cudaMemcpyAsync with host from ‘pinned’ memory
page-locked memory
Allocated using cudaMallocHost() or cudaHostAlloc()
Or pin existing memory using cudaHostRegister()

Sufficient resources must be available
cudaMemcpyAsyncs in different directions (#copy engines)
Device resources (SMEM, registers, etc.)

st
re

am
s 1

2
3
4

HD2

K2
HD3

DH2

Concurrency Examples

Serial (1x)

2-way concurrency (up to 2x)

3-way concurrency (up to 3x)

4-way concurrency (3x+)

4+ way concurrency

Kernel <<< >>>cudaMemcpyAsync(H2D) cudaMemcpyAsync(D2H)

K1
K2

K3
K4

cudaMemcpyAsync(H2D)

DH1

DH3

DH4

K1

K3
K4

HD1 DH1

DH2

DH3

DH4

HD2

HD4

K1
K2

K3

HD1 DH1

DH2

DH3

K4 on CPU

HD3

K1.1 K1.2 K1.3HD1

DH3

DH2

DH1

K7 on CPU

HD2

HD3

K2.1 K2.2 K2.3
K3.1 K3.2 K3.3

DH4HD4 K4.1 K4.2 K4.3
DH5HD5 K5.1 K5.2 K5.3

DH6HD6 K6.1 K6.2 K6.3

K4 on CPU

st
re

am
s

0
1
2
3
4

CPU (dual 6 core SandyBridge E5-2667 @2.9 Ghz, MKL)
222 Gflop/s

GPU (K20X)
Serial: 519 Gflop/s (2.3x)
2-way: 663 Gflop/s (3x)
3-way: 990 Gflop/s (4x)

GPU + CPU
4-way con.: 1180 Gflop/s (5.3x)

Obtain maximum performance by leveraging concurrency
Removes impact of PCIe bandwidth
Removes device memory size limitations

Example – Tiled DGEMM

default stream
stream 1
stream 2
stream 3
stream 4

CPU

Nvidia Visual Profiler (nvvp)

DGEMM: m=n=16384, k=1408

Managing Streams

cudaStream_t stream;
Declares a stream handle

cudaStreamCreate(&stream);
Allocates a stream

cudaStreamDestroy(stream);
Deallocates a stream
Synchronizes host until work in stream has completed

Kernel Concurrency

Assume foo only utilizes 50% of the GPU
Default stream

foo<<<blocks,threads>>>();
foo<<<blocks,threads>>>();

CPU
Stream 0

Kernel Concurrency

Assume foo only utilizes 50% of the GPU
Default stream

foo<<<blocks,threads>>>();
foo<<<blocks,threads>>>();

CPU
Stream 0

Kernel Concurrency

Assume foo only utilizes 50% of the GPU
Default stream

foo<<<blocks,threads>>>();
foo<<<blocks,threads>>>();

Default & user streams
cudaStream_t stream1;

cudaStreamCreate(&stream1);
foo<<<blocks,threads>>>();
foo<<<blocks,threads,0,stream1>>>();
cudaStreamDestroy(stream1);

CPU
Stream 0

CPU
Stream 0
Stream 1

Kernel Concurrency

Assume foo only utilizes 50% of the GPU
Default stream

foo<<<blocks,threads>>>();
foo<<<blocks,threads>>>();

Default & user streams
cudaStream_t stream1;

cudaStreamCreate(&stream1);
foo<<<blocks,threads>>>();
foo<<<blocks,threads,0,stream1>>>();
cudaStreamDestroy(stream1);

CPU
Stream 0

CPU
Stream 0
Stream 1

Kernel Concurrency

User streams
cudaStream_t stream1, stream2;

cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
foo<<<blocks,threads,0,stream1>>>();
foo<<<blocks,threads,0,stream2>>>();
cudaStreamDestroy(stream1);
cudaStreamDestroy(stream2);

CPU
Stream 1
Stream 2

Kernel Concurrency

User streams
cudaStream_t stream1, stream2;

cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
foo<<<blocks,threads,0,stream1>>>();
foo<<<blocks,threads,0,stream2>>>();
cudaStreamDestroy(stream1);
cudaStreamDestroy(stream2);

CPU
Stream 1
Stream 2

Concurrent Memory Copies

cudaMemcpy(...)
Places transfer into default stream
Synchronous: Must complete prior to returning

cudaMemcpyAsync(..., stream)
Places transfer into stream and returns immediately

To achieve concurrency
Transfers must be in a non-default stream
Only 1 transfer per direction at a time
Memory on the host must be pinned

Pinned Memory

Pageable Memory (malloc, new, etc)
Can be paged in and out
Achieves a low % of peak PCIe bandwidth

Pinned Memory
Cannot be paged in and out
Achieves a high % of peak PCIe bandwidth

cudaMallocHost(), cudaHostAlloc(), cudaFreeHost()
Allocate/Free pinned memory on the host
Replaces malloc/free

cudaHostRegister(), cudaHostUnregister()
Pins/Unpins existing memory

Paged Memory Example

int *h_ptr, *d_ptr;

h_ptr=malloc(bytes);
cudaMalloc(&d_ptr, bytes);

cudaMemcpyAsync(d_ptr, h_ptr, bytes, cudaMemcpyHostToDevice, stream);

free(h_ptr);

cudaFree(d_ptr);

(synchronous)

Pinned Memory Example

int *h_ptr, *d_ptr;

cudaMallocHost(&h_ptr, bytes);
cudaMalloc(&d_ptr, bytes);

cudaMemcpyAsync(d_ptr, h_ptr, bytes, cudaMemcpyHostToDevice, stream);

cudaFreeHost(h_ptr);

cudaFree(d_ptr);

(asynchronous)

Pinned Memory Example 2

int *h_ptr, *d_ptr;

h_ptr=malloc(bytes);
cudaHostRegister(h_ptr,bytes,0);
cudaMalloc(&d_ptr,bytes);

cudaMemcpyAsync(d_ptr,h_ptr, bytes, cudaMemcpyHostToDevice, stream);

cudaHostUnregiseter(h_ptr);
free(h_ptr);
cudaFree(d_ptr);

(asynchronous)

Concurrency Examples

Synchronous
cudaMemcpy(...);
foo<<<...>>>();

Asynchronous Same Stream
cudaMemcpyAsync(...,stream1);
foo<<<...,stream1>>>();

Asynchronous Different Streams
cudaMemcpyAsync(...,stream1);
foo<<<...,stream2>>>();

CPU
Stream 0

Concurrency Examples

Synchronous
cudaMemcpy(...);
foo<<<...>>>();

Asynchronous Same Stream
cudaMemcpyAsync(...,stream1);
foo<<<...,stream1>>>();

Asynchronous Different Streams
cudaMemcpyAsync(...,stream1);
foo<<<...,stream2>>>();

CPU
Stream 0

CPU
Stream 1

Concurrency Examples

Synchronous
cudaMemcpy(...);
foo<<<...>>>();

Asynchronous Same Stream
cudaMemcpyAsync(...,stream1);
foo<<<...,stream1>>>();

Asynchronous Different Streams
cudaMemcpyAsync(...,stream1);
foo<<<...,stream2>>>();

CPU
Stream 0

CPU
Stream 1

CPU
Stream 1
Stream 2

Implicit Synchronization

These functions implicitly synchronize the device
cudaMalloc, cudaFree
cudaEventCreate, cudaEventDestroy,
cudaStreamCreate, cudaStreamDestroy
cudaHostRegister, cudaHostUnregister
cudaFuncSetCacheConfig

Avoid by reusing memory and data structures as much as possible

Explicit Synchronization

CUDA provides mechanisms for expressing synchronization between
the host, device, and streams.

Synchronize everything
cudaDeviceSynchronize()
Blocks host until all issued CUDA calls are complete

Synchronize host w.r.t. a specific stream
cudaStreamSynchronize (streamid)
Blocks host until all issued CUDA calls in streamid are complete

Explicit Synchronization using Events

Mechanism for arbitrary synchronization
Create ‘events’ at specific points within streams
boolean state: occurred / not occurred, default = occured

Synchronize using events
cudaEventRecord (event, streamid)
cudaEventQuery (event)
cudaEventSynchronize (event)
cudaStreamWaitEvent (stream, event)

Explicit Synchronization Example

cudaEvent_t event;
cudaEventCreate (&event); // create event

cudaMemcpyAsync (d_in, in, size, H2D, stream1); // 1) H2D copy of new input
cudaEventRecord (event, stream1); // record event

cudaMemcpyAsync (out, d_out, size, D2H, stream2); // 2) D2H copy of previous
// result

cudaStreamWaitEvent (stream2, event); // wait for event in stream1
kernel <<< , , , stream2 >>> (d_in, d_out); // 3) must wait for 1 and 2

asynchronousCPUmethod (…) // Async CPU method

Explicit Synchronization Example

cudaEvent_t event;
cudaEventCreate (&event); // create event

cudaMemcpyAsync (d_in, in, size, H2D, stream1); // 1) H2D copy of new input
cudaEventRecord (event, stream1); // record event

cudaMemcpyAsync (out, d_out, size, D2H, stream2); // 2) D2H copy of previous
// result

cudaStreamWaitEvent (stream2, event); // wait for event in stream1
kernel <<< , , , stream2 >>> (d_in, d_out); // 3) must wait for 1 and 2

asynchronousCPUmethod (…) // Async CPU method

CPU

D2H

H2DStream 1
Stream 2 Kernel

Async CPU CPU

D2H

H2DStream 1
Stream 2 Kernel

Async CPU

CUDA_LAUNCH_BLOCKING

Environment variable which forces sychronization
export CUDA_LAUNCH_BLOCKING=1
All CUDA operations are synchronous w.r.t the host

Useful for debugging race conditions
If it runs successfully with CUDA_LAUNCH_BLOCKING set but doesn’t
without you have a race condition.

Advanced: Relaxed Default Streams

Libraries sometimes use the default stream internally

Explicitly disable blocking from default stream (CUDA 5.0+)
cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);

CUDA 7.0 can create separate default streams for each host thread
NVCC option --default-stream per-thread

Explicit handles for default streams
cudaStreamLegacy, cudaStreamPerThread
Use case:

cudaDeviceSynchronize() blocks all streams on the device!
Use cudaStreamSynchronize(cudaStreamPerThread) instead

Advanced: Priority Streams (K20+)

You can give streams priority
CUDA 5.5+
High priority streams will preempt lower priority streams.

Currently executing blocks will complete but new blocks will only be scheduled after
higher priority work has been scheduled.

Query available priorities:
cudaDeviceGetStreamPriorityRange(&low, &high)
Kepler: low = 0, high = -1
Lower number is higher priority

Create using special API:
cudaStreamCreateWithPriority(&stream, flags, priority)

Advanced: Stream Callbacks

Cuda 5.0+ allows you to add stream callbacks (K20 or newer)
Useful for launching work on the host when something has completed

void CUDART_CB MyCallback(void *data){
...

}
...

MyKernel<<<100, 512, 0, stream>>>();
cudaStreamAddCallback(stream, MyCallback, (void*)i, 0);

Callbacks are processed by a driver thread
The same thread processes all callbacks
You can use this thread to signal other threads
Cannot make any CUDA calls from callback

Advanced: Multiple GPUs

cudaDeviceSynchronize syncs with current device only

Streams are associated with a particular device
Current device when stream was created
Error if stream is referenced when its device is not current
Each device has its own default stream

Events are associated with a particular device
cudaEventRecord will fail if event and stream associate with different devices
cudaEventElapsedTime must take two events associated with the same device

Synchronization works between devices with any event
cudaEventQuery, cudaEventSynchronize, cudaStreamWaitEvent

Advanced: Multi-Process Service (MPS)

Background:
Each process has a unique context.
Only a single context can be active on a device at a time.
Multiple processes (e.g. MPI) on a single GPU could not operate
concurrently

MPS: Software layer that sits between the driver and your application.
Routes all CUDA calls through a single context
Multiple processes can execute concurrently

Advanced: Multi-Process Service (cont)

Advantages:
Oversubscribe MPI processes and concurrency occurs automatically

E.g. 1 MPI process per core sharing a single GPU

Simple and natural path to acceleration (especially if your application is
MPI ready)

Disadvantage:
MPS adds extra launch latency
Not supported on older hardware (Kepler and newer)
Linux Only

Common Streaming Issues

Using the default stream

Not using asynchronous version of memcpy

Not using pinned host memory for memcpy

Implicit synchronization

Concurrency can be disabled for debugging
CUDA_LAUNCH_BLOCKING=1

Potential Hazards

Concurrency is broken if there are more than 62 outstanding operations
Kernels, memory copies, recorded events
That is, in 'issue order' concurrent operations must not be separated by more than
62 other issues
Further operations are serialized
Avoid by changing issue order

Kernels using more than 8 textures cannot run concurrently
Switching L1/Shared configuration may break concurrency
Hardware older than SM3.5 suffers from false serialization

Fermi – Concurrent Kernels

Hardware Work Queue

Z--Y--X R--Q--P C--B--AP -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

depth-first

Fermi allows 16-way concurrency
But CUDA kernels multiplex into a single queue
Issue order matters for concurrency see “CUDA Concurrency & Streams”

https://developer.nvidia.com/gpu-computing-webinars

https://developer.nvidia.com/gpu-computing-webinars

Fermi – Concurrent Kernels

Fermi allows 16-way concurrency
But CUDA kernels multiplex into a single queue
Issue order matters for concurrency see “CUDA Concurrency & Streams”

https://developer.nvidia.com/gpu-computing-webinars

Hardware Work Queue

Z – R – C – Y – Q – B – X – P – A P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

breadth-first

https://developer.nvidia.com/gpu-computing-webinars

K20 Improved Concurrency

Multiple Hardware Work Queues

C — B — A

R — Q — P

Z — Y — X

Kepler allows 32-way concurrency
One kernel queue per stream
No inter-stream dependencies

P -- Q -- R

A -- B -- C

X -- Y -- Z

Stream 1

Stream 2

Stream 3

depth-first or
breadth-first

Nvidia Visual Profiler (nvvp)

Nvidia Visual Profiler (nvvp)

What is the
host doing?

Nvidia Visual Profiler (nvvp)

What copies
are happening?

Nvidia Visual Profiler (nvvp)

How much
overlap?

Nvidia Visual Profiler (nvvp)

Streams

Nvidia Visual Profiler (nvvp)

Multi GPU

Concurrency Guidelines

Code to the programming model – streams
Future devices will continually improve HW rep. of programming model
Often possible to hide host-device communication overhead

Pay attention to operations which can break concurrency
Use of default stream
Implicit synchronization

Synchronize only when required
Excessive synchronization imparts overhead, limits scheduler

Use profilers! (nvvp, Nsight, …)

Questions?

docs.nvidia.com
google[GTC on demand]

An MPS use case for deep learning

http://on-demand.gputechconf.com/gtc/2017/presentation/S7320-
tim-kaldewey-optimizing-efficiency-of-deep-learning-workloads-
through-gpu-virtualization.pdf

YOUR FUTURE STARTS HERE.
NVIDIA is hiring interns and new college grads. Come join the industry leader in
virtual reality, artificial intelligence, self-driving cars, and gaming.

Learn more at www.nvidia.com/university
General hiring areas bit.ly/nvidiaur-jd
Email your resume to Chau Luu cluu@nvidia.com

http://www.nvidia.com/university
http://bit.ly/nvidiaur-jd
http://nvidia.com

