
mjb – March 26, 2021

1

Computer Graphics

OpenMP Tasks

tasks.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – March 26, 2021

2

Computer Graphics

Remember OpenMP Sections?

#pragma omp parallel sections

{

#pragma omp section
{

Task 1

}

#pragma omp section
{

Task 2
}

}

There is an implied barrier at the end

Sections are independent blocks of code, able to be
assigned to separate threads if they are available.

OpenMP sections are static, that is, they are good if you know, when
you are writing the program, how many of them you will need.

mjb – March 26, 2021

3

Computer Graphics

It would be nice to have something more Dynamic

Imagine a capability where you can write
something to do down on a Post-It® note,
accumulate the Post-It notes, then have all of
the threads together execute that set of tasks.

You would also like to not have to know,
ahead of time, how many of these Post-It
notes you will write. That is, you want the
total number to be dynamic.

Well, congratulations, you have just invented
OpenMP Tasks!

mjb – March 26, 2021

4

Computer Graphics

• An OpenMP task is a single line of code or a structured block which is immediately “written
down” in a list of tasks.

• The new task can be executed immediately, or it can be deferred.

• If the if clause is used and the argument evaluates to 0, then the task is executed
immediately, superseding whatever else that thread is doing.

• There has to be an existing parallel thread team for this to work. Otherwise one thread ends
up doing all tasks and you don’t get any contribution to parallelism.

• One of the best uses of this is to process elements of a linked list or a tree.

OpenMP Tasks

You can create a task barrier with:

#pragma omp taskwait

Tasks are very much like OpenMP Sections, but Sections are static, that is, the number of
sections is set when you write the code, whereas Tasks can be created anytime, and in any
number, under control of your program’s logic.

mjb – March 26, 2021

5

Computer Graphics

OpenMP Task Example:
Something (Supposedly) Simple

omp_set_num_threads(2);
#pragma omp parallel default(none)
{

#pragma omp task
fprintf(stderr, “A\n”);

#pragma omp task
fprintf(stderr, “B\n”);

}

Without this, thread #0 has to do everything

Writes fprintf(stderr, “A\n”); on a sticky note
and adds it to the list of tasks

Writes fprintf(stderr, “B\n”); on a sticky note
and adds it to the list of tasks

#pragma omp task

Adds the next line of code, or block of code, to the list of tasks

mjb – March 26, 2021

6

Computer Graphics

If You Run This a Number of Times, You Get This:
(Uh-oh, what Happened?)

B
A
B
A

B
B
A
A

B
A
A
B

B
A
A
B

B
A
B
A

1. Why do we not get the same output every time?

2. Why do we get 4 things printed when we only have print
statements in 2 tasks?

Not so simple, huh?

The first answer is easy. Unless you make some special arrangements, the order of
execution of the different tasks is undefined.

The second answer is that we actually asked each of the two threads to put two tasks on
the sticky notes, for a total of four. How can we get only one thread to do this?

1 2 3 4 5Run #

mjb – March 26, 2021

7

Computer Graphics

The “single” Pragma

omp_set_num_threads(2);
#pragma omp parallel default(none)
{

#pragma omp single
{

#pragma omp task
fprintf(stderr, “A\n”);

#pragma omp task
fprintf(stderr, “B\n”);

}
}

When using Tasks, you only want one thread to write the things to do
down on the sticky note, but you want all of the threads to be able to
execute the sticky notes.

mjb – March 26, 2021

8

Computer Graphics

But, if you run this, the order of printing will still be
non-deterministic. To solve that problem, do this:

omp_set_num_threads(2);
#pragma omp parallel
{

#pragma omp single default(none)
{

#pragma omp task
fprintf(stderr, “A\n”);

#pragma omp taskwait

#pragma omp task
fprintf(stderr, “B\n”);

#pragma omp taskwait
}

}

Causes all tasks to wait until
they are completed

Causes all tasks to wait until
they are completed

mjb – March 26, 2021

9

Computer Graphics

A Better OpenMP Task Example:
Processing each Element of a Linked List

#pragma omp parallel default(none)
{

#pragma omp single default(none)
{

element *p = listHead;
while(p != NULL)
{

#pragma omp task firstprivate(p)
Process(p);

p = p->next;
}

}

#pragma omp taskwait
}

Without this, each thread does a full traversal – bad idea!

Without this, thread #0 has to do everything

Put this here if you want to wait for all tasks to finish
being executed before proceeding

Write “Process(p)” on a sticky note and add it to the list

Copies the current value of p into the
task and immediately makes it private
(i.e., not shared)

mjb – March 26, 2021

10

Computer Graphics

One more thing – Task Dependencies

omp_set_num_threads(3);
#pragma omp parallel
{

#pragma omp single default(none)
{

float a, b, c;
#pragma omp task depend(OUT: a)

a = 10.;

#pragma omp task depend(IN: a, OUT: b)
b = a + 16.;

#pragma omp task depend(IN: b)
c = b + 12.;

}
#pragma omp taskwait

}

This maintains the proper dependencies, but, because it involves all of the
tasks, it essentially serializes the parallelism out of them.
Be careful not to go overboard with dependencies!

Remember from before: unless you make some special arrangements, the order of
execution of the different tasks is undefined. Here come the special arrangements.

mjb – March 26, 2021

11

Computer Graphics

• We would like to traverse it as quickly as possible.
• We are assuming that we do not need to traverse it in order.
• We just need to visit all nodes.

A

C

F

L M

G

N O

D

H I

E

J K

B

Given a tree:

Tree Traversal Algorithms

mjb – March 26, 2021

12

Computer Graphics

• This is common in graph algorithms, such as searching.

• If the tree is binary and is balanced, then the maximum depth of the
tree is log2(# of Nodes)

• Strategy at a node:
1. follow one descendent node
2. follow the other descendent node
3. process the node you’re at

A

C

F

L M

G

N O

D

H I

E

J K

B

Tree Traversal Algorithms

This order could be re-
arranged, depending on what
you are trying to do

mjb – March 26, 2021

13

Computer Graphics

#pragma omp parallel

#pragma omp single

Traverse(root);

#pragma omp taskwait

Without this, each thread does a full traversal – bad idea!

Without this, thread #0 has to do everything – bad idea!

Put this here if you want to wait for all nodes to be traversed
before proceeding

Tree Traversal Algorithms

mjb – March 26, 2021

14

Computer Graphics

void
Traverse(Node *n)
{

if(n->left != NULL)
{

#pragma omp task private(n) untied
Traverse(n->left);

}

if(n->right != NULL)
{

#pragma omp task private(n) untied
Traverse(n->right);

}

#pragma omp taskwait

Process(n);
}

Parallelizing a Binary Tree Traversal with Tasks

Put this here if you
want to wait for both
branches to be taken
before processing the
parent

mjb – March 26, 2021

15

Computer Graphics

void
Process(Node *n)
{

for(int i = 0; i < 1024; i++)
{

n->value = pow(n->value, 1.1);
}

}

Benchmarking a Binary Task-driven Tree Traversal

mjb – March 26, 2021

16

Computer Graphics

Traverse(A);

1211985421

131063

147

15

Parallelizing a Binary Tree Traversal with Tasks

mjb – March 26, 2021

17

Computer Graphics

Traverse(A);

1211985421

131063

147

15

Parallelizing a Binary Tree Traversal with Tasks: Tied

(g++ 10.2)

0 31

Threads:

3 3

3

2

1

1 2

1

0

31 2

2

2

2

2

mjb – March 26, 2021

18

Computer Graphics

Traverse(A);

1211985421

131063

147

15

Parallelizing a Binary Tree Traversal with Tasks: Untied

(g++ 10.2)

0 31

Threads:

3 3

3

2

1

1

2

1

1

3

00

0

0

30

mjb – March 26, 2021

19

Computer Graphics

Thread # Number of Tasks

0 29

1 31

2 41

3 26

6 Levels – icpc 15.0.0:

How Evenly Tasks Get Assigned to Threads
g++ vs. icpc

Thread # Number of Tasks

0 1999

1 2068

2 2035

3 2089

12 Levels – icpc 15.0.0:

Thread # Number of Tasks

0 1

1 41

2 42

3 43

6 Levels – g++ 10.2:

Thread # Number of Tasks

0 3071

1 1

2 3071

3 2048

12 Levels – g++ 10.2:

mjb – March 26, 2021

20

Computer Graphics

Thread # Number of Tasks

0 1

1 32

2 47

3 47

6 Levels – g++ 4.9:

Thread # Number of Tasks

0 2561

1 2

2 2813

3 2815

12 Levels – g++ 4.9:

How Evenly Tasks Get Assigned to Threads
g++ 4.9 vs. g++ 10.2

Thread # Number of Tasks

0 1

1 41

2 42

3 43

6 Levels – g++ 10.2:

Thread # Number of Tasks

0 3071

1 1

2 3071

3 2048

12 Levels – g++ 10.2:

mjb – March 26, 2021

21

Computer Graphics

How Evenly Tasks Get Assigned to Threads
Tied vs. Untied

Thread # Number of Tasks

0 1

1 41

2 42

3 43

6 Levels – g++ 10.2 -- Tied:

Thread # Number of Tasks

0 3071

1 1

2 3071

3 2048

12 Levels – g++ 10.2 -- Tied:

Thread # Number of Tasks

0 1

1 47

2 32

3 47

6 Levels – g++ 10.2 -- Untied:

Thread # Number of Tasks

0 3071

1 1

2 2048

3 3071

12 Levels – g++ 10.2 -- Untied:

mjb – March 26, 2021

22

Computer Graphics

Performance vs. Number of Threads

Threads

N
o

d
e

s
P

ro
ce

s
se

d
 p

er
 S

ec
o

n
d

Number of
Tree Levels

mjb – March 26, 2021

23

Computer Graphics

Performance vs. Number of Levels

Levels

N
o

d
e

s
P

ro
ce

s
se

d
 p

er
 S

ec
o

n
d

Number of
Threads

mjb – March 26, 2021

24

Computer Graphics

Performance vs. Number of Levels

Levels

N
o

d
e

s
P

ro
ce

s
se

d
 p

er
 S

ec
o

n
d

Number of
Threads

8-thread Speed-up ≈ 6.7

Fp ≈ 97%

Max Speed-up ≈ 33x

mjb – March 26, 2021

25

Computer Graphics

• Tasks get spread among the current “thread team”

• Tasks can execute immediately or can be deferred. They are executed at
“some time”.

• Tasks can be moved between threads, that is, if one thread has a backlog of
tasks to do, an idle thread can come steal some workload.

• Tasks are more dynamic than sections. The task paradigm would still work if
there was a variable number of children at each node.

Parallelizing a Tree Traversal with Tasks:
Summary

