
2.5 Parallel Computational Complexity 31

2.5 Parallel Computational Complexity

In order to examine the complexity of computational problems and their parallel

algorithms, we need some new basic notions. We will now introduce a few of these.

2.5.1 Problem Instances and Their Sizes

Let Π be a computational problem. In practice we are usually confronted with a

particular instance of the problem Π . The instance is obtained from Π by replacing

the variables in the definition of Π with actual data. Since this can be done in many

ways, each way resulting in a different instance of Π , we see that the problem Π

can be viewed as a set of all the possible instances of Π .

To each instance π of Π we can associate a natural number which we call the size

of the instance π and denote by

size(π).

Informally, size(π) is roughly the amount of space needed to represent π in some

way accessible to a computer and, in practice, depends on the problem Π .

For example, if we choose Π ≡ “sort a given finite sequence of numbers,” then

π ≡ “sort 0 9 2 7 4 5 6 3” is an instance of Π and size(π) = 8, the number of

numbers to be sorted. If, however, Π ≡ “Is n a prime number?”, then “Is 17 a prime

number?” is an instance π of Π with size(π) = 5, the number of bits in the binary

representation of 17. And if Π is a problem about graphs, then the size of an instance

of Π is often defined as the number of nodes in the actual graph.

Why do we need sizes of instances? When we examine how fast an algorithm A

for a problem Π is, we usually want to know how A’s execution time depends on the

size of instances of Π that are input to A. More precisely, we want to find a function

T (n)

whose value at n will represent the execution time of A on instances of size n. As a

matter of fact, we are mostly interested in the rate of growth of T (n), that is, how

quickly T (n) grows when n grows.

For example, if we find that T (n) = n, then A’s execution time is a linear function

of n, so if we double the size of problem instances, A’s execution time doubles too.

More generally, if we find that T (n) = nconst (const � 1), then A’s execution time

is a polynomial function of n; if we now double the size of problem instances, then

A’s execution time multiplies by 2const . If, however, we find that T (n) = 2n , which

is an exponential function of n, then things become dramatic: doubling the size n of

problem instances causes A to run 2n-times longer! So, doubling the size from 10 to

20 and then to 40 and 80, the execution time of A increases 210 (≈thousand) times,

then 220 (≈million) times, and finally 240 (≈thousand billion) times.

32 2 Overview of Parallel Systems

2.5.2 Number of Processing Units Versus Size of Problem Instances

In Sect. 2.1, we defined the parallel execution time Tpar, speedup S, and efficiency

E of a parallel program P for solving a problem Π on a computer C(p) with p

processing units. Let us augment these definitions so that they will involve the size

n of the instances of Π . As before, the program P for solving Π and the computer

C(p) are tacitly understood, so we omit the corresponding indexes to simplify the

notation. We obtain the parallel execution time Tpar(n), speedup S(n), and efficiency

E(n) of solving Π ’s instances of size n:

S(n)
def

=
Tseq(n)

Tpar(n)
,

E(n)
def

=
S(n)

p
.

So let us pick an arbitrary n and suppose that we are only interested in solving

instances of Π whose size is n. Now, if there are too few processing units in C(p), i.e.,

p is too small, the potential parallelism in the program P will not be fully exploited

during the execution of P on C(p), and this will reflect in low speedup S(n) of P .

Likewise, if C(p) has too many processing units, i.e., p is too large, some of the

processing units will be idling during the execution of the program P , and again this

will reflect in low speedup of P . This raises the following question that obviously

deserves further consideration:

How many processing units p should have C(p),

so that, for all instances of Π of size n, the speedup of P will be maximal?

It is reasonable to expect that the answer will depend somehow on the type of C ,

that is, on the multiprocessor model (see Sect. 2.3) underlying the parallel computer

C . Until we choose the multiprocessor model, we may not be able to obtain answers

of practical value to the above question. Nevertheless, we can make some general

observations that hold for any type of C . First observe that, in general, if we let n

grow then p must grow too; otherwise, p would eventually become too small relative

to n, thus making C(p) incapable of fully exploiting the potential parallelism of P .

Consequently, we may view p, the number of processing units that are needed to

maximize speedup, to be some function of n, the size of the problem instance at

hand. In addition, intuition and practice tell us that a larger instance of a problem

requires at least as many processing units as required by a smaller one. In sum, we

can set

p = f (n),

where f : N → N is some nondecreasing function, i.e., f (n) � f (n + 1), for all n.

2.5 Parallel Computational Complexity 33

Second, let us examine how quickly can f (n) grow as n grows? Suppose that

f (n) grows exponentially. Well, researchers have proved that if there are exponen-

tially many processing units in a parallel computer then this necessarily incurs long

communication paths between some of them. Since some communicating process-

ing units become exponentially distant from each other, the communication times

between them increase correspondingly and, eventually, blemish the theoretically

achievable speedup. The reason for all of that is essentially in our real, 3-dimensional

space, because

• each processing unit and each communication link occupies some non-zero vol-

ume of space, and

• the diameter of the smallest sphere containing exponentially many processing

units and communication links is also exponential.

In sum, exponential number of processing units is impractical and leads to theoreti-

cally tricky situations.

Suppose now that f (n) grows polynomially, i.e., f is a polynomial function of

n. Calculus tells us that if poly(n) and exp(n) are a polynomial and an exponential

function, respectively, then there is an n′ > 0 so that poly(n) < exp(n) for all n > n′;

that is, poly(n) is eventually dominated by exp(n). In other words, we say that

a polynomial function poly(n) asymptotically grows slower than an exponential

function exp(n). Note that poly(n) and exp(n) are two arbitrary functions of n.

So we have f (n) = poly(n) and consequently the number of processing units is

p = poly(n),

where poly(n) is a polynomial function of n. Here we tacitly discard polynomial

functions of “unreasonably” large degrees, e.g. n100. Indeed, we are hoping for

much lower degrees, such as 2, 3, 4 or so, which will yield realistic and affordable

numbers p of processing units.

In summary, we have obtained an answer to the question above which—because of

the generality of C and Π , and due to restrictions imposed by nature and economy—

falls short of our expectation. Nevertheless, the answer tells us that p must be some

polynomial function (of a moderate degree) of n.

We will apply this to Theorem 2.1 (p. 16) right away in the next section.

2.5.3 The Class NC of Efficiently Parallelizable Problems

Let P be an algorithm for solving a problem Π on CRCW-PRAM(p). According to

Theorem 2.1, the execution of P on EREW-PRAM(p) will be at most O(log p)-times

slower than on CRCW-PRAM(p). Let us use the observations from previous section

and require that p = poly(n). It follows that log p = log poly(n) = O(log n). To

appreciate why, see Exercises in Sect. 2.7.

34 2 Overview of Parallel Systems

Combined with Theorem 2.1 this means that for p = poly(n) the execution of P on

EREW-PRAM(p) will be at most O(log n)-times slower than on CRCW-PRAM(p).

But this also tells us that, when p = poly(n), choosing a model from the models

CRCW-PRAM(p), CREW-PRAM(p), and EREW-PRAM(p) to execute a program

affects the execution time of the program by a factor of the order O(log n), where n

is the size of the problem instances to be solved. In other words:

The execution time of a program does not vary too much

as we choose the variant of PRAM that will execute it.

This motivates us to introduce a class of computational problems containing all the

problems that have “fast” parallel algorithms requiring “reasonable” numbers of

processing units. But what do “fast” and “reasonable” really mean? We have seen in

previous section that the number of processing units is reasonable if it is polynomial

in n. As for the meaning of “fast”, a parallel algorithm is considered to be fast if

its parallel execution time is polylogarithmic in n. That is fine, but what does now

“polylogarithmic” mean? Here is the definition.

Definition 2.1 A function is polylogarithmic in n if it is polynomial in log n,

i.e., if it is ak(log n)k + ak−1(log n)k−1 + · · · + a1(log n)1 + a0, for some

k � 1.

We usually write logi n instead of (log n)i to avoid clustering of parentheses. The sum

ak logkn + ak−1logk−1n + · · · + a0 is asymptotically bounded above by O(logk n).

To see why, consider Exercises in Sect. 2.7.

We are ready to formally introduce the class of problems we are interested in.

Definition 2.2 Let NC be the class of computational problems solvable in

polylogarithmic time on PRAM with polynomial number of processing units.

If a problem Π is in the class NC, then it is solvable in polylogarithmic parallel time

with polynomially many processing units regardless of the variant of PRAM used

to solve Π . In other words, the class NC is robust, insensitive to the variations of

PRAM. How can we see that? If we replace one variant of PRAM with another, then

by Theorem 2.1 Π ’s parallel execution time O(logk n) can only increase by a factor

O(log n) to O(logk+1 n) which is still polylogarithmic.

In sum, NC is the class of efficiently parallelizable computational problems.

Example 2.1 Suppose that we are given the problem Π ≡ “add n given numbers.”

Then π ≡ “add numbers 10, 20, 30, 40, 50, 60, 70, 80” is an instance of size(π) = 8

2.5 Parallel Computational Complexity 35

a2a1
a4a3 a6a5 a8a7

a1+a2

a1+a2+a3+a4 a5+a6+a7+a8

a3+a4 a5+a6 a7+a8

a1+a2+a3+a4+a5+a6+a7+a8

s = 1

s = 2

s = 3

P1
P2 P3

P1
P2

P4

P1

Fig. 2.16 Adding eight numbers in parallel with four processing units

of the problem Π . Let us now focus on all instances of size 8, that is, instances of

the form π ≡ “add numbers a1, a2, a3, a4, a5, a6, a7, a8.”

The fastest sequential algorithm for computing the sum a1 + a2 + a3 + a4 + a5 +

a6 + a7 + a8 requires Tseq(8) = 7 steps, with each step adding the next number to

the sum of the previous ones.

In parallel, however, the numbers a1, a2, a3, a4, a5, a6, a7, a8 can be summed in

just Tpar(8) = 3 parallel steps using 8
2

= 4 processing units which communicate in a

tree-like pattern as depicted in Fig. 2.16. In the first step, s = 1, each processing unit

adds two adjacent input numbers. In each next step, s � 2, two adjacent previous

partial results are added to produce a new, combined partial result. This combining

of partial results in a tree-like manner continues until 2s+1 > 8. In the first step,

s = 1, all of the four processing units are engaged in computation; in step s = 2, two

processing units (P3 and P4) start idling; and in step s = 3, three processing units

(P2, P3 and P4) are idle.

In general, instances π(n) of Π can be solved in parallel time Tpar = ⌈log n⌉ =

O(log n) with ⌈ n
2
⌉ = O(n) processing units communicating in similar tree-like pat-

terns. Hence, Π ∈ NC and the associated speedup is S(n) =
T seq(n)

T par(n)
= O(n

log n
). �

Notice that, in the above example, the efficiency of the tree-like parallel addition

of n numbers is quite low, E(n) = O(1
log n

). The reason for this is obvious: only

half of the processing units engaged in a parallel step s will be engaged in the next

parallel step s + 1, while all the other processing units will be idling until the end of

computation. This issue will be addressed in the next section by Brent’s Theorem.

36 2 Overview of Parallel Systems

2.6 Laws and Theorems of Parallel Computation

In this section we describe the Brent’s theorem, which is useful in estimating the

lower bound on the number of processing units that are needed to keep a given

parallel time complexity. Then we focus on the Amdahl’s law, which is used for

predicting the theoretical speedup of a parallel program whose different parts allow

different speedups.

2.6.1 Brent’s Theorem

Brent’s theorem enables us to quantify the performance of a parallel program when

the number of processing units is reduced.

Let M be a PRAM of an arbitrary type and containing unspecified number of

processing units. More specifically, we assume that the number of processing units

is always sufficient to cover all the needs of any parallel program.

When a parallel program P is run on M , different numbers of operations of P are

performed, at each step, by different processing units of M . Suppose that a total of

W

operations are performed during the parallel execution of P on M (W is also called

the work of P), and denote the parallel runtime of P on M by

Tpar, M(P).

Let us now reduce the number of processing units of M to some fixed number

p

and denote the obtained machine with the reduced number of processing units by

R.

R is a PRAM of the same type as M which can use, in every step of its operation, at

most p processing units.

Let us now run P on R. If p processing units cannot support, in every step of the

execution, all the potential parallelism of P , then the parallel runtime of P on R,

Tpar, R(P),

may be larger than Tpar, M(P). Now the question raises: Can we quantify Tpar, R(P)?

The answer is given by Brent’s Theorem which states that

Tpar, R(P) = O

(

W

p
+ Tpar, M(P)

)

.

2.6 Laws and Theorems of Parallel Computation 37

Fig. 2.17 Expected (linear)

speedup as a function of the

number of processing units

processing units

speedup16

14

12

10

8

6

4

2

0

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

Proof Let Wi be the number of P’s operations performed by M in i th step and

T := Tpar, M(P). Then
∑T

i=1 Wi = W. To perform the Wi operations of the i th step

of M , R needs
⌈

Wi

p

⌉

steps. So the number of steps which R makes during its

execution of P is Tpar, R(P) =
∑T

i=1

⌈

Wi

p

⌉

�
∑T

i=1

(

Wi

p
+ 1

)

� 1
p

∑T
i=1 Wi + T =

W
p

+ Tpar, M(P). �

Applications of Brent’s Theorem

Brent’s Theorem is useful when we want to reduce the number of processing units as

much as possible while keeping the parallel time complexity. For example, we have

seen in Example 2.1 on p. 34 that we can sum up n numbers in parallel time O(log n)

with O(n) processing units. Can we do the same with asymptotically less processing

units? Yes, we can. Brent’s Theorem tells us that O(n/ log n) processing units suffice

to sum up n numbers in O(log n) parallel time. See Exercises in Sect. 2.7.

2.6.2 Amdahl’s Law

Intuitively, we would expect that doubling the number of processing units should

halve the parallel execution time; and doubling the number of processing units again

should halve the parallel execution time once more. In other words, we would expect

that the speedup from parallelization is a linear function of the number of processing

units (see Fig. 2.17).

However, linear speedup from parallelization is just a desirable optimum which

is not very likely to become a reality. Indeed, in reality very few parallel algorithms

achieve it. Most of parallel programs have a speedup which is near-linear for small

numbers of processing elements, and then flattens out into a constant value for large

numbers of processing elements (see Fig. 2.18).

38 2 Overview of Parallel Systems

Fig. 2.18 Actual speedup as

a function of the number of

processing units

processing units

speedup16

14

12

10

8

6

4

2

0

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

Setting the Stage

How can we explain this unexpected behavior? The clues for the answer will be

obtained from two simple examples.

• Example 1. Let P be a sequential program processing files from disk as follows:

– P is a sequence of two parts, P = P1 P2;

– P1 scans the directory of the disk, creates a list of file names, and hands the

list over to P2;

– P2 passes each file from the list to the processing unit for further processing.

Note: P1 cannot be sped up by adding new processing units, because scanning the

disk directory is intrinsically sequential process. In contrast, P2 can be sped up

by adding new processing units; for example, each file can be passed to a separate

processing unit. In sum, a sequential program can be viewed as a sequence of two

parts that differ in their parallelizability, i.e., amenability to parallelization.

• Example 2. Let P be as above. Suppose that the (sequential) execution of P takes

20 min, where the following holds (see Fig. 2.19):

– the non-parallelizable P1 runs 2 min;

– the parallelizable P2 runs 18 min.

Fig. 2.19 P consists of a

non-parallelizable P1 and a

parallelizable P2. On one

processing unit,P1 runs 2

min and P2 runs 18 min

P

P1 P2

182

2.6 Laws and Theorems of Parallel Computation 39

P

P1 P2

T
seq

(P1) T
seq

(P2)

Fig. 2.20 P consists of a non-parallelizable P1 and a parallelizable P2. On a single processing unit

P1 requires Tseq(P1) time and P2 requires Tseq(P2) time to complete

Note: since only P2 can benefit from additional processing units, the parallel execu-

tion time Tseq(P) of the whole P cannot be less than the time Tseq(P1) taken by the

non-parallelizable part P1 (that is, 2 min), regardless of the number of additional pro-

cessing units engaged in the parallel execution of P . In sum, if parts of a sequential

program differ in their potential parallelisms, they differ in their potential speedups

from the increased number of processing units, so the speedup of the whole program

will depend on their sequential runtimes.

The clues that the above examples brought to light are recapitulated as follows: In

general, a program P executed by a parallel computer can be split into two parts,

• part P1 which does not benefit from multiple processing units, and

• part P2 which does benefit from multiple processing units;

• besides P2’s benefit, also the sequential execution times of P1 and P2 influence

the parallel execution time of the whole P (and, consequently, P’s speedup).

Derivation

We will now assess quantitatively how the speedup of P depends on P1’s and P2’s

sequential execution times and their amenability to parallelization and exploitation

of multiple processing units.

Let Tseq(P) be the sequential execution time of P . Because P = P1 P2, a sequence

of parts P1 and P2, we have

Tseq(P) = Tseq(P1) + Tseq(P2),

where Tseq(P1) and Tseq(P2) are the sequential execution times of P1 and P2, respec-

tively (see Fig. 2.20).

When we actually employ additional processing units in the parallel execution of

P , it is the execution of P2 that is sped up by some factor s > 1, while the execution

of P1 does not benefit from additional processing units. In other words, the execution

time of P2 is reduced from Tseq(P2) to 1
s

Tseq(P2), while the execution time of P1

remains the same, Tseq(P1). So, after the employment of additional processing units

the parallel execution time Tpar(P) of the whole program P is

Tpar(P) = Tseq(P1) +
1

s
Tseq(P2).

40 2 Overview of Parallel Systems

The speedup S(P) of the whole program P can now be computed from definition,

S(P) =
Tseq(P)

Tpar(P)
.

We could stop here; however, it is usual to express S(P) in terms of b, the fraction

of Tseq(P) during which parallelization of P is beneficial. In our case

b =
Tseq(P2)

Tseq(P)
.

Plugging this in the expression for S(P), we finally obtain the Amdahl’s Law

S(P) =
1

1 − b + b
s

.

Some Comments on Amdahl’s Law

Strictly speaking, the speedup in the Amdahl’s Law is a function of three variables,

P , b and s, so it would be more appropriately denoted by S(P, b, s). Here b is the

fraction of the time during which the sequential execution of P can benefit from

multiple processing units. If multiple processing units are actually available and

exploited by P , the part of P that exploits them is sped up by the factor s > 1. Since

s is only the speedup of a part of the program P , the speedup of the whole P cannot

be larger than s; specifically, it is given by S(P) of the Amdahl’s Law.

From the Amdahl’s Law we see that

S <
1

1 − b
,

which tells us that a small part of the program which cannot be parallelized will limit

the overall speedup available from parallelization. For example, the overall speedup

S that the program P in Fig. 2.19 can possibly achieve by parallelizing the part P2

is bounded above by S < 1

1− 18
20

= 10.

Note that in the derivation of the Amdahl’s Law nothing is said about the size of the

problem instance solved by the program P . It is implicitly assumed that the problem

instance remains the same, and that the only thing we carry out is parallelization of

P and then application of the parallelized P on the same problem instance. Thus,

Amdahl’s law only applies to cases where the size of the problem instance is fixed.

Amdahl’s Law at Work

Suppose that 70% of a program execution can be sped up if the program is parallelized

and run on 16 processing units instead of one. What is the maximum speedup that

can be achieved by the whole program? What is the maximum speedup if we increase

the number of processing units to 32, then to 64, and then to 128?

In this case we have b = 0.7, the fraction of the sequential execution that can be

parallelized; and 1 − b = 0.3, the fraction of calculation that cannot be parallelized.

2.6 Laws and Theorems of Parallel Computation 41

The speedup of the parallelizable fraction is s. Of course, s � p, where p is the

number of processing units. By Amdahl’s Law the speedup of the whole program is

S =
1

1 − b + b
s

=
1

0.3 + 0.7
s

�
1

0.3 + 0.7
16

= 2.91.

If we double the number of processing units to 32 we find that the maximum

achievable speedup is 3.11:

S =
1

1 − b + b
s

=
1

0.3 + 0.7
s

�
1

0.3 + 0.7
32

= 3.11 ,

and if we double it once again to 64 processing units, the maximum achievable

speedup becomes 3.22:

S =
1

1 − b + b
s

=
1

0.3 + 0.7
s

�
1

0.3 + 0.7
64

= 3.22.

Finally, if we double the number of processing units even to 128, the maximum

speedup we can achieve is

S =
1

1 − b + b
s

=
1

0.3 + 0.7
s

�
1

0.3 + 0.7
128

= 3.27.

In this case doubling the processing power only slightly improves the speedup.

Therefore, using more processing units is not necessarily the optimal approach.

Note that this complies with actual speedups of realistic programs as we have

depicted in Fig. 2.18.

⋆ A Generalization of Amdahl’s Law

Until now we assumed that there are just two parts of of a given program, of which

one cannot benefit from multiple processing units and the other can. We now assume

that the program is a sequence of three parts, each of which could benefit from

multiple processing units. Our goal is to derive the speedup of the whole program

when the program is executed by multiple processing units.

So let P = P1 P2 P3 be a program which is a sequence of three parts P1, P2, and

P3. See Fig. 2.21. Let Tseq(P1) be the time during which the sequential execution of

Fig. 2.21 P consists of

three differently

parallelizable parts P

P1 P2

Tseq(P1) Tseq(P2) Tseq(P3)

P3

42 2 Overview of Parallel Systems

P spends executing part P1. Similarly we define Tseq(P2) and Tseq(P3). Then the

sequential execution time of P is

Tseq(P) = Tseq(P1) + Tseq(P2) + Tseq(P3).

But we want to run P on a parallel computer. Suppose that the analysis of P shows

that P1 could be parallelized and sped up on the parallel machine by factor s1 > 1.

Similarly, P2 and P3 could be sped up by factors s2 > 1 and s3 > 1, respectively.

So we parallelize P by parallelizing each of the three parts P1, P2, and P3, and

run P on the parallel machine. The parallel execution of P takes Tpar(P) time,

where Tpar(P) = Tpar(P1) + Tpar(P2) + Tpar(P3). But Tpar(P1) = 1
s1

Tseq(P1), and

similarly for Tpar(P2) and Tpar(P3). It follows that

Tpar(P) =
1

s1
Tseq(P1) +

1

s2
Tseq(P2) +

1

s3
Tseq(P3).

Now the speedup of P can easily be computed from its definition, S(P) =
T seq(P)

T par(P)
.

We can obtain a more informative expression for S(P). Let b1 be the fraction of

Tseq(P) during which the sequential execution of P executes P1; that is, b1 =
T seq(P1)

T seq(P)
.

Similarly we define b2 and b3. Applying this in the definition of S(P) we obtain

S(P) =
Tseq(P)

Tpar(P)
=

1
b1
s1

+
b2
s2

+
b3
s3

.

Generalization to programs which are sequences of arbitrary number of parts Pi is

straightforward. In reality, programs typically consist of several parallelizable parts

and several non-parallelizable (serial) parts. We easily handle this by setting si � 1.

2.7 Exercises

1. How many pairwise interactions must be computed when solving the n-body

problem if we assume that interactions are symmetric?

2. Give an intuitive explanation why Tpar � Tseq � p ·Tpar, where Tpar and Tseq are

the parallel and sequential execution times of a program, respectively, and p is

the number of processing units used during the parallel execution.

3. Can you estimate the number of different network topologies capable of inter-

connecting p processing units Pi and m memory modules M j ? Assume that each

topology should provide, for every pair (Pi ,M j), a path between Pi and M j .

4. Let P be an algorithm for solving a problem Π on CRCW-PRAM(p). Accord-

ing to Theorem 2.1, the execution of P on EREW-PRAM(p) will be at most

O(log p)-times slower than on CRCW-PRAM(p). Now suppose that p =

poly(n), where n is the size of a problem instance. Prove that log p = O(log n).

2.7 Exercises 43

5. Prove that the sum ak logkn + ak−1logk−1n + · · · + a0 is asymptotically

bounded above by O(logk n).

6. Prove that O(n/ log n) processing units suffice to sum up n numbers in O(log n)

parallel time. Hint: Assume that the numbers are summed up with a tree-like

parallel algorithm described in Example 2.1. Use Brent’s Theorem with W =

n − 1 and T = log n and observe that by reducing the number of processing units

to p := n log n, the tree-like parallel algorithm will retain its O(log n) parallel

time complexity.

7. True or false:

(a) The definition of the parallel execution time is: “execution time = computa-

tion time + communication time + idle time.”

(b) A simple model of the communication time is:“communication time = set-

up time + data transfer time.”

(c) Suppose that the execution time of a program on a single processor is T1,

and the execution time of the same parallelized program on p processors is Tp.

Then, the speedup and efficiency are S = T1/Tp and E = S/p, respectively.

(d) If speedup S < p then E > 1.

8. True or false:

(a) If processing units are identical, then in order to minimize parallel execution

time, the work (or, computational load) of a parallel program should be parti-

tioned into equal parts and distributed among the processing units.

(b) If processing units differ in their computational power, then in order to min-

imize parallel execution time, the work (or, computational load) of a parallel

program should be distributed evenly among the processing units.

(c) Searching for such distributions is called load balancing.

9. Why must be the load of a parallel program evenly distributed among processors?

10. Determine the bisection bandwidths of 1D-mesh (chain of computers with bidi-

rectional connections), 2D-mesh, 3D-mesh, and the hypercube.

11. Let a program P be composed of a part R that can be ideally parallelized, and

of a sequential part S; that is, P = RS. On a single processor, S takes 10% of

the total execution time and during the remaining 90% of time R could run in

parallel.

(a) What is the maximal speedup reachable with unlimited number of processors?

(b) How is this law called?

12. Moore’s law states that computer performance doubles every 1.5 year. Suppose

that the current computer performance is Perf = 1013. When will be, according

to this law, 10 times greater (that is, 10 × Perf)?

13. A problem Π comprises two subproblems, Π1 and Π2, which are solved by

programs P1 and P2, respectively. The program P1 would run 1000 s on the

computer C1 and 2000 s on the computer C2, while P2 would require 2000 and

3000 s on C1 and C2, respectively. The computers are connected by a 1000-km

long optical fiber link capable of transferring data at 100 MB/sec with 10 msec

latency. The programs can execute concurrently but must transfer either (a) 10

MB of data 20,000 times or (b) 1 MB of data twice during the execution. What

is the best configuration and approximate runtimes in cases (a) and (b)?

44 2 Overview of Parallel Systems

2.8 Bibliographical Notes

In presenting the topics in this Chapter we have strongly leaned on Trobec et al. [26]

and Atallah and Blanton [3]. On the computational models of sequental computation

see Robič [22]. Interconnection networks are discussed in great detail in Dally and

Towles [6], Duato et al. [7], Trobec [25] and Trobec et al. [26]. The dependence

of execution times of real world parallel applications on the performance of the

interconnection networks is discussed in Grama et al. [12].

