
Advanced Topics:
Streams, Multi-GPU, Tools, Libraries,

etc.

Copyright © 2011 Samuel S. Cho

CSC 391/691: GPU Programming Fall 2011

Streams

• Until now, we have largely focused on
massively data-parallel execution on
GPUs.

• Task parallelism (also available on CPUs)
is also possible on GPUs.

• Rather than simultaneously computing
the same function on lots of data (data
parallelism), task parallelism involves
doing two or more completely different
tasks in parallel.

• Task parallelism is not as flexible as data
parallelism, but it allows the extraction
of even more optimization from GPU-
based implementation of algorithms.

Page-Locked Host Memory

• Recall: To allocate memory on the GPU, we
used cudaMalloc(). On the host, we used
malloc().

• CUDA has another option: cudaHostAlloc().
While malloc allocates a standard pageable
host memory, cudaHostAlloc() allocates a
buffer of page-locked (or pinned) host
memory.

• Page-locked buffers are guaranteed to remain
in physical memory by the operating system.
Therefore, it will never page out to a disk.

• Uses real addresses rather than virtual
ones so memory bandwidth is higher.

• Page locked memory will reduce
memory available to the operating
system, so it will run out of memory
more quickly.

CUDA Stream

• A CUDA Stream is a sequence of
operations (commands) that are
executed in order.

• CUDA streams can be created and
executed together and interleaved
although the “program order” is
always maintained within each
stream.

• Streams proved a mechanism to
overlap memory transfer and
computations operations in
different stream for increased
performance if sufficient resources
are available.

Creating a Stream

• Done by creating a stream object and associated it
with a series of CUDA commands that then becomes
the stream. CUDA commands have a stream pointer
as an argument.

• Cannot use regular cudaMemcpy with streams, need
asynchronous commands for concurrent operation.

• cudaMemcpyAsync is an asynchronous version of
cudaMemcpy that copies date to/from host and the
device.

• May return before copy complete

• A stream argument specified.

• Needs “page-locked” memory.

• Multiple calls to cudaStreamCreate can create
multiple streams. Then multiple kernels (even
different ones!) can be executed on each stream.

cudaStream_t stream1;
cudaStreamCreate(&stream1);

cudaMemcpyAsync(…, stream1);
MyKernel<<< grid, block, stream1>>>(…);
cudaMemcpyAsync(… , stream1);

Naive Stream Example
#define SIZE (N*20)
…
int main(void) {
 int *a, *b, *c;
 int *dev_a, *dev_b, *dev_c;

 cudaMalloc((void**)&dev_a, N * sizeof(int));
 cudaMalloc((void**)&dev_b, N * sizeof(int));
 cudaMalloc((void**)&dev_c, N * sizeof(int));

 // paged-locked allocation
 cudaHostAlloc((void**)&a,SIZE*sizeof(int),cudaHostAllocDefault);
 cudaHostAlloc((void**)&b,SIZE*sizeof(int),cudaHostAllocDefault);
 cudaHostAlloc((void**)&c,SIZE*sizeof(int),cudaHostAllocDefault);

 // generate data
 for(int i=0;i<SIZE;i++) {
 a[i] = rand();
 b[i] = rand();
 }

 // loop over data in chunks of two
 for(int i=0;i < SIZE;i+= N {
 cudaMemcpyAsync(dev_a,a+i,N*sizeof(int),cudaMemcpyHostToDevice,stream);
 cudaMemcpyAsync(dev_b,b+i,N*sizeof(int),cudaMemcpyHostToDevice,stream);
 MyKernel<<<(int)ceil(N/1024)+1,1024,0,stream>>>(dev_a,dev_b,dev_c);
 cudaMemcpyAsync(c+1,dev_c,N*sizeof(int),cudaMemcpyDeviceToHost,stream);
 }
 cudaStreamSynchronize(stream); // wait for stream to finish
 cudaStreamDestroy(stream); // because we care
 return 0;
}

Multiple Streams v.1.0

cudaStream_t stream1, stream2;
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);

int *dev_a1, *dev_b1, *dev_c1; // stream 1 mem ptrs
int *dev_a2, *dev_b2, *dev_c2; // stream 2 mem ptrs

//stream 1
cudaMalloc((void**)&dev_a1, N * sizeof(int));
cudaMalloc((void**)&dev_b1, N * sizeof(int));
cudaMalloc((void**)&dev_c1, N * sizeof(int));
//stream 2
cudaMalloc((void**)&dev_a2, N * sizeof(int));
cudaMalloc((void**)&dev_b2, N * sizeof(int));
cudaMalloc((void**)&dev_c2, N * sizeof(int));
…
for(int i=0;i < SIZE;i+= N*2 { // loop over data in chunks
 // stream 1
 cudaMemcpyAsync(dev_a1,a+i,N*sizeof(int),cudaMemcpyHostToDevice,stream1);
 cudaMemcpyAsync(dev_b1,b+i,N*sizeof(int),cudaMemcpyHostToDevice,stream1);
 kernel<<<(int)ceil(N/1024)+1,1024,0,stream1>>>(dev_a,dev_b,dev_c);
 cudaMemcpyAsync(c+1,dev_c1,N*sizeof(int),cudaMemcpyDeviceToHost,stream1);
 //stream 2
 cudaMemcpyAsync(dev_a2,a+i,N*sizeof(int),cudaMemcpyHostToDevice,stream2);
 cudaMemcpyAsync(dev_b2,b+i,N*sizeof(int),cudaMemcpyHostToDevice,stream2);
 kernel<<<(int)ceil(N/1024)+1,1024,0,stream2>>>(dev_a,dev_b,dev_c);
 cudaMemcpyAsync(c+1,dev_c2,N*sizeof(int),cudaMemcpyDeviceToHost,stream2);
}
cudaStreamSynchronise(stream1); // wait for stream1 to finish
cudaStreamSynchronise(stream2); // wait for stream2 to finish

Multiple Streams

• The main goal is to overlap the
memory transfer with the kernel
execution.

• One of the reasons why this works is
because the cudaMemcpyAsync is a
request for memory transfer, but the
code continues on.

• Note: Sometimes, the most well-
intended “enhancements” do nothing
more than introduce complications to
the code.

Multiple Streams v.2.0

cudaStream_t stream1, stream2;
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);

int *dev_a1, *dev_b1, *dev_c1; // stream 1 mem ptrs
int *dev_a2, *dev_b2, *dev_c2; // stream 2 mem ptrs

//stream 1
cudaMalloc((void**)&dev_a1, N * sizeof(int));
cudaMalloc((void**)&dev_b1, N * sizeof(int));
cudaMalloc((void**)&dev_c1, N * sizeof(int));
//stream 2
cudaMalloc((void**)&dev_a2, N * sizeof(int));
cudaMalloc((void**)&dev_b2, N * sizeof(int));
cudaMalloc((void**)&dev_c2, N * sizeof(int));
…
for(int i=0;i < SIZE;i+= N*2 { // loop over data in chunks
 // interweave stream 1 and steam 2
 cudaMemcpyAsync(dev_a1,a+i,N*sizeof(int),cudaMemcpyHostToDevice,stream1);
 cudaMemcpyAsync(dev_a2,a+i,N*sizeof(int),cudaMemcpyHostToDevice,stream2);
 cudaMemcpyAsync(dev_b1,b+i,N*sizeof(int),cudaMemcpyHostToDevice,stream1);
 cudaMemcpyAsync(dev_b2,b+i,N*sizeof(int),cudaMemcpyHostToDevice,stream2);
 kernel<<<(int)ceil(N/1024)+1,1024,0,stream1>>>(dev_a,dev_b,dev_c);
 kernel<<<(int)ceil(N/1024)+1,1024,0,stream2>>>(dev_a,dev_b,dev_c);
 cudaMemcpyAsync(c+1,dev_c1,N*sizeof(int),cudaMemcpyDeviceToHost,stream1);
 cudaMemcpyAsync(c+1,dev_c2,N*sizeof(int),cudaMemcpyDeviceToHost,stream2);
}
cudaStreamSynchronise(stream1); // wait for stream1 to finish
cudaStreamSynchronise(stream2); // wait for stream2 to finish

Multiple Streams

• If we assume that the memory
copies and the kernel
execution times are about the
same, the memory transfer will
properly overlap with the
kernel calls.

• In practice, timing the overlap
requires experimenting, but it
can (under optimal conditions)
effectively remove the memory
transfer latency by hiding it.

Why Multi-GPU Programming?

• Many HPC systems contain multiple
GPUs.

• Servers: S2070 = 4 GPUs

• Desktops: GreenFlashXX = 2 GPUs
each connected by 3-way SLI
(Scalable Link Interface)

• Additional processing power to divide
work between GPUs.

• Reduced memory transfer latency.

• Additional Memory

• Some Many interesting problems do
not fit into a single GPU.

Multi-GPU Memory

• GPUs do not share global memory.

• A kernel executing on one GPU cannot access
memory on another GPU.

• Inter-GPU communication

• Application code is responsible for transferring data
between GPUs as necessary.

• Data travels across the PCIe bus, even when GPUs
are connected to the same PCIe switch.

Multiple Device Management

• GPUs have consecutive integer IDs,
starting with 0.

• cudaGetDeviceCount(int
*num_devices);

• Command is designed to determine
whether multi-GPU usage is
possible.

• cudaSetDevice(int device_id)

• Device selection within the code by
specifying the identifier and making
CUDA kernels run on the selected
GPU.

• If command is not called, the default
behavior is device_id = 0.

int main(int argc, char **argv) {
 int deviceCount;

 cudaGetDeviceCount(&deviceCount);

 if (deviceCount < 2) {
 printf(“Error: Only %d GPUs found.\n”,
 deviceCount);
 }

 // ...
 cudaSetDevice(1); // use second GPU
 // ...
}

Multiple Device Kernel Calls

• The CPU-GPU context must be
established before commands are
issued to the GPU.

• The cudaSetDevice command sets the
context by which the commands are
issues to a specific GPU.

• cudaDeviceSynchronize() waits until all
preceding commands in all streams of
all host threads have completed.

• Note that all of each of the GPUs can
execute different kernels too, just like
with streams.

int size = 1024 * sizeof(int);

// set device 0 as current
cudaSetDevice(0);

float *p0;
// allocate memory on device 0
cudaMalloc(&p0, size);
// launch kernel on device 0
MyKernel<<<grid, block>>>(p0);

// set device 1 as current
cudaSetDevice(1);

float *p1;
// allocate memory on device 1
cudaMalloc(&p1, size);
// launch kernel on device 1
MyKernel<<<grid, block>>>(p1);

// you know there had to be one of these
cudaDeviceSynchronize();

Multiple Device Memory Transfer

• Peer to peer memory copy must be done
explicitly.

• It used to be done via a direct copy to
CPU main memory (pre-Fermi).

• Now direct transfers between GPUs.

int size = 1024 * sizeof(int);

// set device 0 as current
cudaSetDevice(0);

float *p0;
// allocate memory on device 0
cudaMalloc(&p0, size);
// launch kernel on device 0
MyKernel<<<grid, block>>>(p0);

// set device 1 as current
cudaSetDevice(1);

float *p1;
// allocate memory on device 1
cudaMalloc(&p1, size);
// copy p0 to p1 from device 0 to 1
cudaMemcpyPeer(p1, 1, p0, 0, size);
// launch kernel on device 1
MyKernel<<<grid, block>>>(p1);

// you know there had to be one of these
cudaDeviceSynchronize();

CUDA Tools + Libraries

• CUFFT - Fast Fourier Transform library (NVIDIA, free)

• CUBLAS - Basic Linear Algebra Subprograms (NVIDIA, free)

• CUDPP - CUDA Data Parallel Primitives Library (UC Davis, free)

• Parallel Scan, Sort, Reduction, etc.

• CULA - CUDA implementation of industry standard Linear Algebra Package
(LAPACK).

• QR factorization, linear system solver, singular value decomposition, least
squared solvers, etc.

• Language wrappers

• JCUDA (Java), PyCUDA (Python)

• etc. etc. etc.

