CSC 391/691: GPU Programming Fall 2011

Advanced Topics:

Streams, Multi-GPU, Tools, Libraries,
etc.

Copyright © 2011 Samuel S. Cho

Streams

Until now, we have largely focused on
massively data-parallel execution on

GPUs.

Task parallelism (also available on CPUs)
is also possible on GPU .

Rather than simultaneously computing
the same function on lots of data (data
parallelism), task parallelism involves
doing two or more completely different
tasks in parallel.

Task parallelism is not as flexible as data
parallelism, but it allows the extraction
of even more optimization from GPU-
based implementation of algorithms.

Page-Locked Host Memory

Recall: To allocate memory on the GPU, we
used cudaMalloc(). On the host, we used
malloc().

CUDA has another option: cudaHostAlloc().
While malloc allocates a standard pageable
host memory, cudaHostAlloc() allocates a
buffer of page-locked (or pinned) host
memory.

Page-locked buffers are guaranteed to remain
in physical memory by the operating system.
Therefore, it will never page out to a disk.

° Uses real addresses rather than virtual
ones so memory bandwidth is higher.

Page locked memory will reduce
memory available to the operating
system, so it will run out of memory
more quickly.

CUDA Stream

A CUDA Stream is a sequence of
operations (commands) that are
executed in order.

CUDA streams can be created and
executed together and interleaved
although the “program order” is
always maintained within each
stream.

Streams proved a mechanism to
overlap memory transfer and
computations operations in
different stream for increased
performance if sufficient resources
are available.

Creating a Stream

Done by creating a stream object and associated it
with a series of CUDA commands that then becomes
the stream. CUDA commands have a stream pointer
as an argument.

Cannot use regular cudaMemcpy with streams, need
asynchronous commands for concurrent operation.

cudaMemcpyAsync is an asynchronous version of
cudaMemcpy that copies date to/from host and the
device.

May return before copy complete
A stream argument specified.

Needs “page-locked” memory.

Multiple calls to cudaStreamCreate can create
multiple streams. Then multiple kernels (even
different ones!) can be executed on each stream.

cudaStream t streaml;
cudaStreamCreate (&streaml) ;

cudaMemcpyAsync (.., streaml);
MyKernel<<< grid, block, streaml>>>(.);
cudaMemcpyAsync (.. , streaml) ;

Naive Stream Example

##define SIZE (N*20)

int main(void) {
int *a, *b, *c;
int *dev_a, *dev b, *dev c;

cudaMalloc((void**)&dev _a, N * sizeof(int));
cudaMalloc((void**) &dev b, N * sizeof(int));
cudaMalloc((void**) &dev c, N * sizeof(int));

// paged-locked allocation

cudaHostAlloc ((void**) &a,SIZE*sizeof (int) ,cudaHostAllocDefault) ;
cudaHostAlloc ((void**) &b,SIZE*sizeof (int) ,cudaHostAllocDefault) ;
cudaHostAlloc ((void**) &c,SIZE*sizeof (int) ,cudaHostAllocDefault) ;

// generate data

for(int i=0;i<SIZE;i++) {
af[i] = rand();
b[i] = rand()

}

// loop over data in chunks of two

for(int i=0;i < SIZE;i+= N {
cudaMemcpyAsync (dev_a,a+i,N*sizeof (int) ,cudaMemcpyHostToDevice, stream) ;
cudaMemcpyAsync (dev_b,b+i,N*sizeof (int) ,cudaMemcpyHostToDevice, stream) ;
MyKernel<<<(int)ceil (N/1024)+1,1024,0,stream>>>(dev_a,dev b,dev c);
cudaMemcpyAsync (c+1l,dev_c,N*sizeof (int) ,cudaMemcpyDeviceToHost, stream) ;

}

cudaStreamSynchronize (stream); // wait for stream to finish

cudaStreamDestroy (stream); // because we care

return O;

Multiple Streams v.1.0

cudaStream t streaml, stream2;
cudaStreamCreate (&streaml) ;
cudaStreamCreate (&stream?) ;

int *dev_al, *dev bl, *dev cl; // stream 1 mem ptrs
int *dev_a2, *dev b2, *dev c2; // stream 2 mem ptrs

//stream 1

cudaMalloc((void*¥*) &dev_al, sizeof (int)
cudaMalloc((void**) &dev bl, sizeof (int)
cudaMalloc((void*¥*) &dev cl, sizeof (int)
//stream 2

cudaMalloc((void**) &dev_a2, sizeof (int)
cudaMalloc((void**) &dev b2, sizeof (int)
cudaMalloc((void**) &dev _c2, sizeof (int) 3

for(int i=0;i < SIZE;i+= N*2 { // loop over data in chunks
// stream 1
cudaMemcpyAsync (dev_al,a+i, N*sizeof (int) ,cudaMemcpyHostToDevice,streaml) ;
cudaMemcpyAsync (dev_bl, b+i, N*sizeof (int) ,cudaMemcpyHostToDevice,streaml) ;
kernel<<<(int)ceil (N/1024)+1,1024,0,streaml>>>(dev_a,dev b,dev c);
cudaMemcpyAsync (c+1,dev_cl / N*sizeof (int) ,cudaMemcpyDeviceToHost,streaml) ;
//stream 2
cudaMemcpyAsync (dev_a2,a+i,N*sizeof (int) ,cudaMemcpyHostToDevice, stream2) ;
cudaMemcpyAsync (dev_b2,b+i , N*sizeof (int) ,cudaMemcpyHostToDevice, stream2) ;
kernel<<<(int)ceil (N/1024)+1,1024,0,stream2>>>(dev_a,dev b,dev c);
cudaMemcpyAsync (c+1,dev_c2 ,N*sizeof (int) ,cudaMemcpyDeviceToHost, stream2) ;
}
cudaStreamSynchronise (streaml) ; // wait for streaml to finish
cudaStreamSynchronise (stream2) ; // wait for stream2 to finish

Multiple Streams

The main goal is to overlap the
memory transfer with the kernel
execution.

One of the reasons why this works is
because the cudaMemcpyAsync is a
request for memory transfer, but the
code continues on.

Note: Sometimes, the most well-
intended “enhancements” do nothing
more than introduce complications to
the code.

memcpy A to GPU

memcpy B to GPU

kernel

memcpy A to GPU

memcpy B to GPU

memcpy C from GPU

Kernel

memcpy C from GPU

memcpy A to GPU

memcpy B to GPU

kernel

memcpy A to GPU

memcpy B to GPU

memcpy C from GPU

kernel

memcpy C from GPU

Multiple Streams v.2.0

cudaStream t streaml, stream2;
cudaStreamCreate (&streaml) ;
cudaStreamCreate (&stream?2) ;

int *dev_al, *dev bl, *dev cl; // stream 1 mem ptrs
int *dev_a2, *dev b2, *dev c2; // stream 2 mem ptrs

//stream 1

cudaMalloc((void**)&dev_al, N * sizeof(int)
cudaMalloc((void**)&dev bl, N * sizeof(int)
cudaMalloc((void**)é&dev _cl, N * sizeof(int)
//stream 2

cudaMalloc((void**)&dev_a2, N sizeof (int)
cudaMalloc((void**) &dev b2, N sizeof (int)
cudaMalloc((void**)&dev_c2, N sizeof (int)

for(int i=0;i < SIZE;i+= N*2 ({ // loop over data in chunks
// interweave stream 1 and steam 2
cudaMemcpyAsync (dev_al,a+i,N*sizeof (int) ,cudaMemcpyHostToDevice, streaml) ;
cudaMemcpyAsync (dev_a2,a+i,N*sizeof (int) ,cudaMemcpyHostToDevice, stream2) ;
cudaMemcpyAsync (dev_bl, b+i,N*sizeof (int) ,cudaMemcpyHostToDevice, streaml) ;
cudaMemcpyAsync (dev_b2,b+i,N*sizeof (int) ,cudaMemcpyHostToDevice, stream2) ;
kernel<<<(int)ceil(N/1024)+1,1024,0,stream1>>>(dev_a,dev_b,dev_c);
kernel<<<(int)ceil(N/1024)+1,1024,0,stream2>>>(dev_a,dev_b,dev_c);
cudaMemcpyAsync (c+1l,dev_cl,N*sizeof (int) ,cudaMemcpyDeviceToHost,streaml) ;
cudaMemcpyAsync (c+1l,dev_c2,N*sizeof (int) ,cudaMemcpyDeviceToHost, stream2) ;
}
cudaStreamSynchronise (streaml); // wait for streaml to finish
cudaStreamSynchronise (stream2); // wait for stream2 to finish

Multiple Streams

If we assume that the memory
copies and the kernel
execution times are about the
same, the memory transfer will
properly overlap with the
kernel calls.

In practice, timing the overlap
requires experimenting, but it
can (under optimal conditions)
effectively remove the memory
transfer latency by hiding it.

Stream 0:

Stream 1:

Stream 0:

Stream 1:

Stream 0: kernel

Stream 0:

Stream 1: kernel

Stream 1:

Why Multi-GPU Programming?

® Many HPC systems contain multiple
GPUs.

® Servers: 52070 = 4 GPUs

® Desktops: GreenFlashXX =2 GPUs
each connected by 3-way SLI
(Scalable Link Interface)

Additional processing power to divide
work between GPUs.

Reduced memory transfer latency.

Additional Memory

® Seome Many interesting problems do
not fit into a single GPU.

Multi-GPU Memory

® GPUs do not share global memory.

® A kernel executing on one GPU cannot access
memory on another GPU.

® [nter-GPU communication

® Application code is responsible for transferring data
between GPUs as necessary.

® Data travels across the PCle bus, even when GPUs
are connected to the same PCle switch.

Multiple Device Management

® GPUs have consecutive integer IDs,
starting with 0.

® cudaGetDeviceCount(int

>knum_(:levi(:es); int main(int argc, char **argv) {
int deviceCount;

®¢ Command is designed to determine
whether multi-GPU usage is
possible.

cudaGetDeviceCount (&deviceCount) ;

if (deviceCount < 2) {
printf (“Error: Only %d GPUs found.\n”,
deviceCount) ;

}

® cudaSetDevice(int device_id) i oo
— cudaSetDevice(l); // use second GPU

® Device selection within the code by ...
specifying the identifier and making

CUDA kernels run on the selected
GPU.

If command is not called, the default
behavior is device_id = 0.

Multiple Device Kernel Calls

The CPU-GPU context must be
established before commands are
issued to the GPU.

The cudaSetDevice command sets the
context by which the commands are
issues to a specific GPU.

cudaDeviceSynchronize() waits until all
preceding commands in all streams of
all host threads have completed.

Note that all of each of the GPUs can
execute different kernels too, just like
with streams.

int size = 1024 * sizeof (int);

// set device 0 as current
cudaSetDevice (0) ;

float *p0;

// allocate memory on device 0
cudaMalloc (&p0, size) ;

// launch kernel on device 0
MyKernel<<<grid, block>>>(p0) ;

// set device 1 as current
cudaSetDevice (1) ;

float *pl;

// allocate memory on device 1
cudaMalloc (&pl, size) ;

// launch kernel on device 1
MyKernel<<<grid, block>>>(pl) ;

// you know there had to be one of these
cudaDeviceSynchronize () ;

Multiple Device Memory Transfer

Peer to peer memory copy must be done
explicitly.

It used to be done via a direct copy to

) . int size = 1024 * sizeof(int);
CPU main memory (pre-Fermi).

// set device 0 as current
cudaSetDevice (0) ;

Now direct transfers between GPUs. float *p0;

// allocate memory on device 0
Before GPUDirect v2.0 cudaMalloc(&p0, size);

// launch kernel on device 0
Required Copy into Main Memory MyKernel<<<grid, block>>>(p0) ;

GPU1 GPU2
Memory Memory

, B // set device 1 as current
e = Ny cudaSetDevice (1) ;

p N float *pl;

// allocate memory on device 1
cudaMalloc (&pl, size) ;

// copy p0 to pl from device 0 to 1
cudaMemcpyPeer (pl, 1, p0, 0, size);
// launch kernel on device 1
MyKernel<<<grid, block>>>(pl) ;

// you know there had to be one of these
cudaDeviceSynchronize () ;

CUDA Tools + Libraries

CUFFT - Fast Fourier Transform library (NVIDIA, free)

CUBLAS - Basic Linear Algebra Subprograms (NVIDIA, free)

CUDPP - CUDA Data Parallel Primitives Library (UC Davis, free)
® Parallel Scan, Sort, Reduction, etc.

CULA - CUDA implementation of industry standard Linear Algebra Package
(LAPACK).

® QR factorization, linear system solver, singular value decomposition, least
squared solvers, etc.

Language wrappers

e JCUDA (Java), PyCUDA (Python)

etc. etc. etc.

