
CS 295: Modern Systems
GPU Computing Introduction

Sang-Woo Jun

Spring 2019

Graphic Processing – Some History

q 1990s: Real-time 3D rendering for video games were becoming common
o Doom, Quake, Descent, … (Nostalgia!)

q 3D graphics processing is immensely computation-intensive

Texture mapping
Warren Moore, “Textures and Samplers in Metal,” Metal by Example, 2014

Shading

Gray Olsen, “CSE 470 Assignment 3 Part 2 - Gourad/Phong Shading,” grayolsen.com, 2018

Graphic Processing – Some History

q Before 3D accelerators (GPUs) were common
q CPUs had to do all graphics computation, while maintaining framerate!

o Many tricks were played

Doom (1993) : “Affine texture mapping”
• Linearly maps textures to screen location,

disregarding depth
• Doom levels did not have slanted walls or ramps,

to hide this

Graphic Processing – Some History

q Before 3D accelerators (GPUs) were common
q CPUs had to do all graphics computation, while maintaining framerate!

o Many tricks were played

Quake III arena (1999) : “Fast inverse square root”
magic!

Introduction of 3D Accelerator Cards

q Much of 3D processing is short algorithms repeated on a lot of data
o pixels, polygons, textures, …

q Dedicated accelerators with simple, massively parallel computation

A Diamond Monster 3D, using the Voodoo chipset (1997)
(Konstantin Lanzet, Wikipedia)

NVIDIA Volta-based GV100 Architecture (2018)

Many many cores,
not a lot of cache/control

Peak Performance vs. CPU

Throughput Power Throughput/Power
Intel Skylake 128 SP GFLOPS/4 Cores 100+ Watts ~1 GFLOPS/Watt

NVIDIA V100 15 TFLOPS 200+ Watts ~75 GFLOPS/Watt

Also,

System Architecture Snapshot With a GPU
(2019)

CPU

GPU
GPU Memory

(GDDR5,
HBM2,…)

Host Memory
(DDR4,…)

I/O Hub (IOH)
NVMe

Network
Interface

…

QPI/UPI
12.8 GB/s (QPI)
20.8 GB/s (UPI)

PCIe
16-lane PCIe Gen3: 16 GB/s

…

DDR4 2666 MHz
128 GB/s
100s of GB

GDDR5: 100s GB/s, 10s of GB
HBM2: ~1 TB/s, 10s of GB

Lots of moving parts!

High-Performance Graphics Memory

q Modern GPUs even employing 3D-stacked memory via silicon interposer
o Very wide bus, very high bandwidth
o e.g., HBM2 in Volta

Graphics Card Hub, “GDDR5 vs GDDR5X vs HBM vs HBM2 vs GDDR6 Memory Comparison,” 2019

Massively Parallel Architecture For
Massively Parallel Workloads!
q NVIDIA CUDA (Compute Uniform Device Architecture) – 2007

o A way to run custom programs on the massively parallel architecture!

q OpenCL specification released – 2008
q Both platforms expose synchronous execution of a massive number of

threads

CPU

GPU

Thread

…
GPU Threads

Copy over PCIe Copy over PCIe

CUDA Execution Abstraction

q Block: Multi-dimensional array of threads
o 1D, 2D, or 3D
o Threads in a block can synchronize among themselves
o Threads in a block can access shared memory
o CUDA (Thread, Block) ~= OpenCL (Work item, Work group)

q Grid: Multi-dimensional array of blocks
o 1D or 2D
o Blocks in a grid can run in parallel, or sequentially

q Kernel execution issued in grid units
q Limited recursion (depth limit of 24 as of now)

Simple CUDA Example
Asynchronous call

NVCC
Compiler

Host Compiler

Device
Compiler

CPU+GPU
Software

C/C++
+ CUDA

Code

CPU side GPU side

Simple CUDA Example
1 block

N threads per block

Which of N threads am I?
See also: blockIdx

__global__:
In GPU, called from host/GPU

__device__:
In GPU, called from GPU

__host__:
In host, called from host

N instances of VecAdd spawned in GPU

Should wait for kernel to finish

One function can
be both

Only void allowed

More Complex Example:
Picture Blurring
q Slides from NVIDIA/UIUC Accelerated Computing Teaching Kit
q Another end-to-end example

https://devblogs.nvidia.com/even-easier-introduction-cuda/

q Great! Now we know how to use GPUs – Bye?

Matrix Multiplication
Performance Engineering

Results from NVIDIA P100

Coleman et. al., “Efficient CUDA,” 2017 Architecture knowledge is needed (again)

No faster than CPU

NVIDIA Volta-based GV100 Architecture (2018)

Single Streaming Multiprocessor (SM) has
64 INT32 cores and 64 FP32 cores

(+8 Tensor cores…)

GV100 has 84 SMs

Volta Execution Architecture
q 64 INT32 Cores, 64 FP32 Cores, 4 Tensor Cores, Ray-

tracing cores..
o Specialization to make use of chip space…?

q Not much on-chip memory per thread
o 96 KB Shared memory
o 1024 Registers per FP32 core

q Hard limit on compute management
o 32 blocks AND 2048 threads AND 1024 threads/block
o e.g., 2 blocks with 1024 threads, or 4 blocks with 512

threads
o Enough registers/shared memory for all threads must be

available (all context is resident during execution)

More threads than cores – Threads interleaved to hide memory latency

Resource Balancing Details

q How many threads in a block?
q Too small: 4x4 window == 16 threads

o 128 blocks to fill 2048 thread/SM
o SM only supports 32 blocks -> only 512 threads used

• SM has only 64 cores… does it matter? Sometimes!

q Too large: 32x48 window == 1536 threads
o Threads do not fit in a block!

q Too large: 1024 threads using more than 64 registers
q Limitations vary across platforms (Fermi, Pascal, Volta, …)

Warp Scheduling Unit

q Threads in a block are executed in 32-thread “warp” unit
o Not part of language specs, just architecture specifics
o A warp is SIMD – Same PC, same instructions executed on every core

q What happens when there is a conditional statement?
o Prefix operations, or control divergence
o More on this later!

q Warps have been 32-threads so far, but may change in the future

Memory Architecture Caveats

q Shared memory peculiarities
o Small amount (e.g., 96 KB/SM for Volta) shared across all threads
o Organized into banks to distribute access
o Bank conflicts can drastically lower performance

q Relatively slow global memory
o Blocking, caching becomes important (again)
o If not for performance, for power consumption…

8-way bank conflict
1/8 memory bandwidth

1

Inside the NVIDIA
Ampere Architecture

Ronny Krashinsky, Olivier Giroux
GPU Architects

GTC 2020

2

UNPRECEDENTED ACCELERATION
AT EVERY SCALE

54 BILLION XTORS 3rd GEN
TENSOR CORES

SPARSITY
ACCELERATION MIG 3rd GEN

NVLINK & NVSWITCH

33

UNIFIED AI ACCELERATION

All results are measured
BERT Large Training (FP32 & FP16) measures Pre-Training phase, uses PyTorch including (2/3) Phase1 with Seq Len 128 and (1/3) Phase 2 with Seq Len 512,

V100 is DGX1 Server with 8xV100, A100 is DGX A100 Server with 8xA100, A100 uses TF32 Tensor Core for FP32 training
BERT Large Inference uses TRT 7.1 for T4/V100, with INT8/FP16 at batch size 256. Pre-production TRT for A100, uses batch size 94 and INT8 with sparsity

0

300

600

900

1,200

1,500

1,800

2,100

2,400

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

6X

3X

1X

1X

(FP32)

1X

Se
qu

en
ce

s/
s

Se
qu

en
ce

s/
s

(FP16)
BERT-LARGE INFERENCE

7X

1X0.6X
V100 A100 V100 A100 T4 V100 1/7th A100 A100

(7 MIG)

BERT-LARGE TRAINING

44

ACCELERATING HPC

All results are measured
Except BerkeleyGW, V100 used is single V100 SXM2. A100 used is single A100 SXM4
More apps detail: AMBER based on PME-Cellulose, GROMACS with STMV (h-bond), LAMMPS with Atomic Fluid LJ-2.5, NAMD with v3.0a1 STMV_NVE
Chroma with szscl21_24_128, FUN3D with dpw, RTM with Isotropic Radius 4 1024^3, SPECFEM3D with Cartesian four material model
BerkeleyGW based on Chi Sum and uses 8xV100 in DGX-1, vs 8xA100 in DGX A100

1.6X 1.5X

1.9X

1.5X

2.1X
2.0X

1.7X
1.9X

1.8X

0.0x

0.5x

1.0x

1.5x

2.0x

AMBER GROMACS LAMMPS NAMD Chroma BerkeleyGW FUN3D RTM SPECFEM3D

A100

Sp
ee

du
p

V100

Molecular Dynamics Physics Engineering Geo Science

5

A100 TENSOR-CORE GPU

3rd gen.
NVLINK

2x BW

54 billion transistors in 7nm

Multi-Instance GPU

A100

HB
M

2
HB

M
2

HB
M

2

HB
M

2
HB

M
2

HB
M

2

GigaThread Engine with MIG Control

L2 Cache L2 Cache

NVLink NVLink NVLink NVLink NVLinkNVLink NVLink NVLink NVLink NVLinkNVLink NVLink Scale UP
40MB L2

6.7x capacity
108 SMs

6912 CUDA Cores
1.56 TB/s HBM2
1.7x bandwidth

7x

Scale OUT

6

A100 SM

Third-generation Tensor Core
Faster and more efficient
Comprehensive data types
Sparsity acceleration

Asynchronous data movement
and synchronization

Increased L1/SMEM capacity

3rd Gen.
TENSOR
CORE

3rd Gen.
TENSOR
CORE

3rd Gen.
TENSOR
CORE

3rd Gen.
TENSOR
CORE

192 KB L1 Data Cache / Shared Memory

7

1. New Tensor Core

2. Strong Scaling

3. Elastic GPU

4. Productivity

8

1. New Tensor Core

2. Strong Scaling

3. Elastic GPU

4. Productivity

9

V100

INPUT OPERANDS ACCUMULATOR TOPS
X-factor
vs. FFMA

FP32 FP32 15.7 1x
FP16 FP32 125 8x

V100 TENSOR CORE

125
TOPS

FF16/FP32
Mixed-

precision

8x vs.
FFMA

V100

10

V100

INPUT OPERANDS ACCUMULATOR TOPS
X-factor
vs. FFMA

FP32 FP32 15.7 1x
FP16 FP32 125 8x
FP32 FP32 19.5 1x
FP16 FP32 312 16x

A100 TENSOR CORE

A100

2.5x
TOPS

FF16/FP32
Mixed-

precision

2x
TOPS/

SM

V100→A100

11

V100

INPUT OPERANDS ACCUMULATOR TOPS
X-factor
vs. FFMA

FP32 FP32 15.7 1x
FP16 FP32 125 8x
FP32 FP32 19.5 1x
TF32 FP32 156 8x
FP16 FP32 312 16x
BF16 FP32 312 16x

A100 TENSOR CORE

A100

TF32 accelerates FP32 in/out data → 10x vs. V100 FP32

BFloat16 (BF16) at same rate as FP16

12

V100

INPUT OPERANDS ACCUMULATOR TOPS
X-factor
vs. FFMA

FP32 FP32 15.7 1x
FP16 FP32 125 8x
FP32 FP32 19.5 1x
TF32 FP32 156 8x
FP16 FP32 312 16x
BF16 FP32 312 16x
FP16 FP16 312 16x
INT8 INT32 624 32x
INT4 INT32 1248 64x
BINARY INT32 4992 256x

A100 TENSOR CORE

A100

Inference data types

2x
2x
4x

TOPS
track

operand
width

½
½

¼

13

V100

INPUT OPERANDS ACCUMULATOR TOPS
X-factor
vs. FFMA

SPARSE
TOPS

SPARSE
X-factor
vs. FFMA

FP32 FP32 15.7 1x - -
FP16 FP32 125 8x - -
FP32 FP32 19.5 1x - -
TF32 FP32 156 8x 312 16x
FP16 FP32 312 16x 624 32x
BF16 FP32 312 16x 624 32x
FP16 FP16 312 16x 624 32x
INT8 INT32 624 32x 1248 64x
INT4 INT32 1248 64x 2496 128x
BINARY INT32 4992 256x - -

A100 TENSOR CORE

A100

With Sparsity another 2x, INT8/INT4 reach petaops

14

V100

INPUT OPERANDS ACCUMULATOR TOPS
X-factor
vs. FFMA

SPARSE
TOPS

SPARSE
X-factor
vs. FFMA

FP32 FP32 15.7 1x - -
FP16 FP32 125 8x - -
FP32 FP32 19.5 1x - -
TF32 FP32 156 8x 312 16x
FP16 FP32 312 16x 624 32x
BF16 FP32 312 16x 624 32x
FP16 FP16 312 16x 624 32x
INT8 INT32 624 32x 1248 64x
INT4 INT32 1248 64x 2496 128x
BINARY INT32 4992 256x - -
IEEE FP64 19.5 1x - -

A100 TENSOR CORE

A100

V100→A100
2.5x FLOPS

for HPC

15

V100

INPUT OPERANDS ACCUMULATOR TOPS
X-factor
vs. FFMA

SPARSE
TOPS

SPARSE
X-factor
vs. FFMA

FP32 FP32 15.7 1x - -
FP16 FP32 125 8x - -
FP32 FP32 19.5 1x - -
TF32 FP32 156 8x 312 16x
FP16 FP32 312 16x 624 32x
BF16 FP32 312 16x 624 32x
FP16 FP16 312 16x 624 32x
INT8 INT32 624 32x 1248 64x
INT4 INT32 1248 64x 2496 128x
BINARY INT32 4992 256x - -
IEEE FP64 19.5 1x - -

A100 TENSOR CORE

A100

16

INSIDE A100 TensorFloat-32 (TF32)

→S22082: Mixed-Precision Training of Neural Networks, 5/20 2:45pm PDT

→S21681: How CUDA Math Libraries can help you unleash the power of the new NVIDIA A100 GPU (recording available)

FP32
Matrix

FP32
matrix

FP32
matrix

Format to TF32
and multiply

FP32 accumulate

FP32

Range
exponent

Precision
mantissa

Range of FP32 with
precision of FP16

FP32 input/output
FP32 storage and math for all

activations, gradients, …
everything outside tensor cores

Out-of-the-box
tensor core

acceleration for DL
Easy step towards maximizing
tensor core performance with
mixed-precision (FP16, BF16)

e8 m23
s

FP16

BF16
e8 m7

e5 m10
s

s

si
gn

TF32
e8 m10

s

Up to 4x speedup
on linear solvers

for HPC

17

INSIDE A100 SPARSE TENSOR CORE

→ S22085: Accelerating Sparsity in the NVIDIA Ampere Architecture, 5/20 1:30pm PDT

Fine-grained
structured

pruning
(2:4 non-zero)

Compress

Non-
zero

indices

Non-
zero
data

zero

×
dot-product

Dense
trained
weights

Input
activations

mux

Fine-tuning
weights

Output
activations

select
2x Tensor Core throughput

Structured-sparsity for efficient HW and SW

~2x reduction in weights
footprint and bandwidth

~No loss in inferencing accuracy
Evaluated across dozens of networks: vision, object detection, segmentation, natural language modeling, translation

Sparse
Tensor Core

mux

18

1. New Tensor Core

2. Strong Scaling

3. Elastic GPU

4. Productivity

19

… …

1 layer

DL STRONG SCALING

Input
Activations

Weights

Output
Activations

Each layer is
parallelized
across GPU

DL networks:
Long chains of sequentially-

dependent compute-intensive layers

Tile: work
for 1 SM

Strong scaling

Output
Activations

Output
Activations

Weak scaling

Fixed
network

runs ~2.5x
faster

~2.5x larger network
runs in same time

20

HOW TO KEEP TENSOR CORES FED?

64
128
256
512

1024
2048
4096
8192

16384

TF32 FP16 BF16 INT8 INT4 BIN

A100 dense

0 KB

1 KB

2 KB

3 KB

4 KB

5 KB

6 KB

TF32 FP16 BF16 INT8 INT4 BIN

V100 A100 dense A100 sparse

2x vs.
V100

Math bandwidth
(MACs/clock/SM)

Required
data bandwidth

(A+B operands, B/clock/SM)

3x vs.
V100

21

A100 STRONG SCALING INNOVATIONS

Math

RF

SMEM/L1

L2

DRAM

NVLINK

SM

GPU memory system

Multi-GPU systems

Improve speeds & feeds
and efficiency across all
levels of compute and

memory hierarchy

22

A100 TENSOR CORE
2x throughput vs. V100, >2x efficiency

16x16x16 matrix multiply FFMA V100 TC A100 TC

A100 vs.
V100

(improvement)

A100 vs.
FFMA

(improvement)

Thread sharing 1 8 32 4x 32x
Hardware instructions 128 16 2 8x 64x
Register reads+writes (warp) 512 80 28 2.9x 18x
Cycles 256 32 16 2x 16x
Tensor Cores assume FP16 inputs with FP32 accumulator, V100 Tensor Core instruction uses 4 hardware instructions

Math

RF

SMEM/L1

L2

DRAM

NVLINK

32 Threads (Warp)

Re
gi

st
er

s

FFMA
(32 MACs, 2 cycles)

32-Thread
Operand
Sharing

A100 TC
(1 cycle)

A100 TC Instruction
(2048 MACs, 8 cycles)

16x16

16x8

16x8

8-Thread

V100 TC Instruction
(1024 MACs, 8 cycles)

8-Thread 8-Thread 8-Thread

8x8

8x4

4x
8

23

Tensor Cores

V100

Load-Shared
(4x)

A100

SMEM
Load-Shared
(2x)

A100 SM DATA MOVEMENT EFFICIENCY

Tensor Cores

3x SMEM/L1 bandwidth, 2x in-flight capacity

Math

RF

SMEM/L1

L2

DRAM

NVLINK

w
ar

p0

w
ar

p1

w
ar

p2

w
ar

p3

w
ar

p0

w
ar

p1

w
ar

p2

w
ar

p3

RF RF

Store-Shared

L2

DRAM

Load-Global

L2

DRAM

Load-Global-
Store-Shared
(Async-Copy)

RF

L1

SMEM

RF

L1

SMEM

Reserved for
in-flight dataReserved for

in-flight data

5 reads
1 write 2 reads

24

A100 L2 BANDWIDTH

Math

RF

SMEM/L1

L2

DRAM

NVLINK

64

128

128

128

128

256

V100

80 SMs
V100 TC

64 L2 slices
32 B/clk/slice

16 B/clk/SM
63%

24 B/clk/SM
94%

12 B/clk/SM
47%

Output
Activations

Tile: work
for 1 SM

Parallelize
across GPU

32 B/clk/SM
169%

48 B/clk/SM
253%

24 B/clk/SM
127%

V100++
(hypothetical)

108 SMs
A100 TC

64 L2 slices
32 B/clk/slice

32 B/clk/SM
68%

48 B/clk/SM
101%

24 B/clk/SM
51%

A100

108 SMs
A100 TC

80 L2 slices
64 B/clk/slice

Split L2 with
hierarchical crossbar –

2.3x increase in
bandwidth over V100,

lower latency

25

A100 DRAM BANDWIDTH

Faster HBM2
25% more pins, 38% faster clocks
→ 1.6 TB/s, 1.7x vs. V100

Math

RF

SMEM/L1

L2

DRAM

NVLINK

kernel

buffer A

kernel

buffer B

kernel

buffer A

kernel

buffer B

kernel

buffer C

kernel

buffer D

kernel

buffer E

kernel

…Keep data resident in L2 to
reduce DRAM bandwidth

Larger and smarter L2
40MB L2, 6.7x vs. V100
L2-Residency controls

→ S21819: Optimizing Applications for NVIDIA Ampere GPU Architecture, 5/21 10:15am PDT

26

A100 COMPUTE DATA COMPRESSION

Math

RF

SMEM/L1

L2

DRAM

NVLINK

Up to 4x DRAM+L2 bandwidth
and 2x L2 capacity

for fine-grained
unstructured sparsity

→ S21819: Optimizing Applications for NVIDIA Ampere GPU Architecture, 5/21 10:15am PDT

DRAM

SMs

L2

BW savings

BW savings

Capacity
savings

Activation sparsity due to ReLU

ResNet-50

Sp
ar

si
ty

Sp
ar

si
ty

VGG16_BN

Layers

Layers

Sp
ar

si
ty

Layers

ResNeXt-101

27

A100 NVLINK BANDWIDTH

Math

RF

SMEM/L1

L2

DRAM

NVLINK

Third Generation NVLink
50 Gbit/sec per signal pair
12 links, 25 GB/s in/out, 600 GB/s total
2x vs. V100

NVLink NVLink NVLink NVLink NVLinkNVLink NVLink NVLink NVLink NVLinkNVLink NVLink

→S21884: Under the Hood of the new DGX A100 System Architecture (recording available soon)

28

A100 ACCELERATES CUDA GRAPHS

With strong scaling CPU and grid
launch overheads become
increasingly important
(Amdahl’s law)

Grid launches:
• CPU-to-GPU
• GPU grid-to-grid

…

One-shot CPU-to-GPU
graph submission and

graph reuse

Microarchitecture
improvements for

grid-to-grid latencies

→S21760: CUDA New Features And Beyond, 5/19 10:15am PDT

32-node graphs of empty grids, DGX1-V, DGX-A100

29

A100 STRONG SCALING INNOVATIONS

2.9x Effective RF BW with A100 Tensor Core

2.8x Effective RF capacity with Async-Copy bypassing RF

3.0x Effective SMEM BW with A100 Tensor Core and Async-Copy

2.3x SMEM capacity

2.3x L2 BW

6.7x L2 capacity, +Residency Control

1.7x DRAM BW

1.3x DRAM capacity

2.0x NVLINK BW

2.5x Tensor Core math BW (FP16)Math

RF

SMEM/L1

L2

DRAM

NVLINK

A100 improvements over V100

Delivering unprecedented levels of performance

30

2.9x Effective RF BW with A100 Tensor Core

2.8x Effective RF capacity with Async-Copy bypassing RF

3.0x Effective SMEM BW with A100 Tensor Core and Async-Copy

2.3x SMEM capacity

2.3x L2 BW

1.7x DRAM BW

1.3x DRAM capacity

2.0x NVLINK BW

Math

RF

SMEM/L1

L2

DRAM

NVLINK

5.0x Sparse Tensor Core (FP16)

9.2x

13.3x Compute Data Compression (max)

6.8x
6.7x L2 capacity, +Residency Control

2.5x Tensor Core math BW (FP16)

A100 STRONG SCALING INNOVATIONS

A100 improvements over V100

Delivering unprecedented levels of performance

31

1. New Tensor Core

2. Strong Scaling

3. Elastic GPU

4. Productivity

32

NVLINK: ONE BIG GPU

InfiniBand/Ethernet: travels a long distance, consistency is the responsibility of software

PCI Express: hardware consistency for I/O, not for programming language memory models

NVLINK: hardware consistency for programming language memory models, like system bus

API strengthens consistency to GPU
(managed memory, host memory)

API implements consistency to GPU (NvShmem)
GPU

0
GPU

1

CPU

NIC

Hardware consistency

Hardware consistency

33

HGX A100: 3RD GEN NVLINK & SWITCH

HGX A100 4-GPU: fully-connected system with 100GB/s all-to-all BW

34

HGX A100: 3RD GEN NVLINK & SWITCH

HGX A100 4-GPU: fully-connected system with 100GB/s all-to-all BW

New NVSwitch: 6B transistors in TSMC 7FF, 36 ports, 25GB/s each, per direction

HGX A100 8-GPU: 6x NVSwitch in a fat tree topology, 2.4TB/s full-duplex bandwidth

GPU
0

GPU
1

GPU
2

GPU
3

GPU
4

GPU
5

GPU
6

GPU
7

NVSwitchNVSwitchNVSwitchNVSwitchNVSwitchNVSwitch

Hardware consistency

35

GPU
0

GPU
1

GPU
2

GPU
3

GPU
4

GPU
5

GPU
6

GPU
7

NVSwitchNVSwitchNVSwitchNVSwitchNVSwitchNVSwitch

Hardware consistency

DGX A100: PCIE4 CONTROL & I/O

PEX
Switch

200G NIC

200G NIC

NVMe

NVMe

200G NIC

200G NIC

NVMe

NVMe

200G NIC

200G NIC

NVMe

NVMe

200G NIC

200G NIC

NVMe

NVMe

AMD Rome
64C

AMD Rome
64C

200G NIC 200G NIC

PEX
Switch

PEX
Switch

PEX
Switch

PEX
Switch

Hardware consistency

36

CLOUD SMALL INSTANCE USAGE
Small workloads can under-utilize GPU cloud instances, provisioned at whole GPU level

CSPs can’t use MPS for GPU space-sharing, because it doesn’t provide enough isolation

Switch security
& containment

1 user

Volta security boundary.

GPU
0

GPU
1

GPU
2

GPU
3

GPU
4

GPU
5

GPU
6

GPU
7

NVSwitchNVSwitchNVSwitchNVSwitchNVSwitchNVSwitch

37

PyTorch PyTorchTensorFlow TensorFlow Jarvis + TensorRT TensorRT

NEW: MULTI-INSTANCE GPU (MIG)
Up to 7 instances total, dynamically reconfigurable

Compute instances: compute/fault isolation, but share/compete for memory

GPU instances: separate and isolated paths through the entire memory system

GPU
0 MIG

MIG security &
containment

38

ELASTIC GPU COMPUTING

Each A100 is 1 to 7 GPUs

Each DGX A100 is 1 to 56 GPUs

Each GPU can serve a different

user, with full memory isolation

and QoS

→S21975: Inside NVIDIA's Multi-Instance GPU Feature (recording available)

→S21884: Under the Hood of the new DGX A100 System Architecture (recording available soon)

→S21702: Introducing NVIDIA DGX A100: The Universal AI System for Enterprise, 5/20 9:00am PDT

39

1. New Tensor Core

2. Strong Scaling

3. Elastic GPU

4. Productivity

40

COMPUTE CAPABILITY
Programming Model Development at NVIDIA

Managed memory

Concurrent algorithms

Bulk parallelism + atomics

41

GPU PROGRAMMING IN 2020 AND BEYOND
Math Libraries | Standard Languages | Directives | CUDA

Incremental Performance
Optimization with Directives

Maximize GPU Performance with
CUDA C++/Fortran

GPU Accelerated
C++ and Fortran

#pragma acc data copy(x,y)
{

...

std::transform(par, x, x+n, y, y,
[=](float x, float y){

return y + a*x;
});

...

}

__global__
void saxpy(int n, float a,

float *x, float *y) {
int i = blockIdx.x*blockDim.x +

threadIdx.x;
if (i < n) y[i] += a*x[i];

}

int main(void) {
...
cudaMemcpy(d_x, x, ...);
cudaMemcpy(d_y, y, ...);

saxpy<<<(N+255)/256,256>>>(...);

cudaMemcpy(y, d_y, ...);

std::transform(par, x, x+n, y, y,
[=](float x, float y){

return y + a*x;
});

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

GPU Accelerated Math Libraries

→S21766 Inside the NVIDIA HPC SDK: the Compilers, Libraries and Tools for Accelerated Computing, 5/19 1:30PM PST

42

PROGRAMMING MODEL WANTED
Software pipelining to hide latency is hard.

__device__ void exhibit_A1()
{
memcpy(/* ... */); //< blocks here
/* more work */

compute(); //< needed here
/* more work */

}

__device__ void exhibit_B1()
{
compute_head();
__syncthreads(); //< blocks here
/* more work */

compute_tail(); //< needed here
/* more work */

}

Data Compute

43

PROGRAMMING MODEL WANTED
Software pipelining to hide latency is hard.

__device__ void exhibit_A2()
{
memcpy(/* ... */); //< blocks here
/* memcpy(...); */

compute(); //< needed here
/* compute(); */

}

__device__ void exhibit_B2()
{
compute_head();
__syncthreads(); //< blocks here
/* compute_head();

__syncthreads(); */
compute_tail(); //< needed here
/* compute_tail(); */

}

Data Compute

44

NEW:
Asynchronous algorithms

Managed memory

Concurrent algorithms

Bulk parallelism

45

CO-DESIGNED: A100 & C++20 barrier
Key to asynchronous programming in compute_80

class barrier { // synopsis
//...
void arrive_and_wait();
arrival_token arrive(ptrdiff_t = 1);
void wait(arrival_token &&) const;
//...

};

Nonblocking

#include <cuda/barrier> // ISO C++20 conforming extension
using barrier = cuda::barrier<cuda::thread_scope_block>;

46

ASYNCHRONOUS COPY + BARRIER

Capability PTX ISA CUDA C++ API

Asynchronous barrier mbarrier.{<basis functions>} cuda::barrier<…>

Asynchronous copy
cp.async.ca +
cp.async.mbarrier.arrive

cuda::memcpy_async(…)

+Cache-bypass cp.async.cg

CUDA 11 preview library in
experimental:: namespace

+Zero-fill ragged edge cp.async.* … wr-size, rd-size;

+User-level tracking cp.async.mbarrier.arrive.noinc

+Single-threaded mode cp.async.{commit_group, wait_group}

47

ASYNCHRONOUS PROGRAMMING MODEL

__device__ void exhibit_A3()
{
__shared__ barrier b1, b2;
// ^^initialization omitted
cuda::memcpy_async(/* ... */, b1);

cuda::memcpy_async(/* ... */, b2);
b1.arrive_and_wait();
compute();
b2.arrive_and_wait();
compute();

}

__device__ void exhibit_B3()
{
__shared__ barrier b1, b2;
// ^^initialization omitted
compute_head();
auto t1 = b1.arrive();
compute_head();
auto t2 = b2.arrive();

b1.wait(t1);
compute_tail();
b2.wait(t2);
compute_tail();

}

#include <cuda/barrier> // ISO C++20 conforming extension
using barrier = cuda::barrier<cuda::thread_scope_block>;

Data Compute

48

MULTI-BUFFERING PIPELINES IN C++
#include <cuda/barrier> // ISO C++20 conforming extension
using barrier = cuda::barrier<cuda::thread_scope_block>;

__global__ void exhibit_C(/* ... */) {
__shared__ barrier b[2];
// ^^initialization omitted
barrier::arrival_token t[2];
cuda::memcpy_async(/* ... */, b[0]);
t[0] = b[0].arrive();
for(int step = 0, next = 1; step < steps; ++step, ++next) {

if(next < steps) {
b[next & 1].wait(t[next & 1]);
cuda::memcpy_async(/* ... */, b[next & 1]);
t[next & 1] = b[next & 1].arrive();

}
b[step & 1].wait(t[step & 1]);
compute();
t[step & 1] = b[step & 1].arrive();

}
}

Data

Compute

49

#include <cuda/barrier> // ISO C++20 conforming extension
using barrier = cuda::barrier<cuda::thread_scope_block>;

__global__ void exhibit_C(/* ... */) {
__shared__ barrier b[2];
// ^^initialization omitted
barrier::arrival_token t[2];
cuda::memcpy_async(/* ... */, b[0]);
t[0] = b[0].arrive();
for(int step = 0, next = 1; step < steps; ++step, ++next) {

if(next < steps) {
b[next & 1].wait(t[next & 1]);
cuda::memcpy_async(/* ... */, b[next & 1]);
t[next & 1] = b[next & 1].arrive();

}
b[step & 1].wait(t[step & 1]);
compute();
t[step & 1] = b[step & 1].arrive();

}
}

MULTI-BUFFERING PIPELINES IN C++

Data

Compute

→S21760: CUDA New Features And Beyond, 5/19 10:15am PDT

50

OUR PRODUCTIVITY GAINS FROM A100

Optimized tensor kernels

V100 (launch) V100 (6 months) A100 (launch)

88%
95%

CUTLASS Relative Performance to cuBLAS (tensor fp16)

V100 A100

Thousands

Hundreds

Tens

→S21745: Developing CUDA kernels to push Tensor Cores to the Absolute Limit on NVIDIA A100, 5/21 11:30AM PST

51

CLOSING

52

UNPRECEDENTED ACCELERATION
AT EVERY SCALE

www.nvidia.com/nvidia-ampere-architecture-whitepaper
Whitepaper: NVIDIA A100 Tensor Core GPU Architecture

