ECE4522
Exam No.3

Meysam Golmohammadi

Problem No. 1

(1.a)
Direct multiplication of two complex number is:
(a+jb)(c+jd) =ac+jbc+jad - bd = (ac - bd) + j(bc + ad)

As we can see it contains four real multiplications and two real additions. Now we define three new

variables:

kl=c-(a+b)
k2=a-(d-c)
k3=b-(c+d)

Hence, we can conclude that

ac - bd =kl -k3, bc+ad =kl + k2

Using these three new variables we have:
(a+jb)(c+jd) =(k1- k3) + j(k1+k2)

So by properly arranging the terms the multiplication needs just three real multiplication and five real
addition.

(1.b)

A Fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier transform (DFT)
and its inverse. The DFT definition is:

N-1 N-1
—2%kn k k — 2% kn
X[k] = Z x[n]le /N => X[k] = Z x[n]Wy" where Wy" = N

Computing the DFT of N points in the direct way, takes O(N?) arithmetical operations. This
means the computations is increasing with power of 2 of N and when we want to calculate DFT
of a large data we need a huge amount of calculations. But a FFT can compute the same DFT in
only O(N log2 N) operations. We know that W,\’,‘“ are samples on the unit circle. For example:

FFT has been developed on two important symmetry properties which are:

Complex conjugate symmetry (Symmetry about the imaginary axis) : WIJHN/Z = —Wk

Periodicity: WE*N = Wk

This symmetry allows the number of computations for a DFT to be reduced significantly. Using
periodicity and complex conjugate symmetry properties of W,\',‘, a family of O(Nlog2N)
algorithms, known collectively as Fast Fourier Transform (FFT) algorithms have been developed.
These algorithms use a “divide-and-conquer” approach, that is, they decompose the DFT of a
sequence of length N into smaller-length DFTs that are “merged” to form the N-point DFT. This
procedure may be applied again to the smaller DFTs. Algorithms that decompose the sequence
Xx[n] into smaller sequences are known as decimation-in-time FFTs; algorithms that decompose
the DFT X[k] into smaller sequences are known as decimation-in-frequency FFTs. Under the

constraint of N=2™ the Radix-2 Fast Fourier Transform has been developed. The fact that FFT is

faster can be explained based on the heart of the algorithm: Divide and Conquer. So rather than

working with big size Signals, we divide our signal into smaller ones, and perform DFT of these

smaller signals. At the end we add all the smaller DFT to get actual DFT of the big signal.

Problem No. 2:

(2.a)
2
wln] = [0.5 — 0.5cos (%)] wg[n] =>
.2Ttn 21N
el ™M el M
w[n] = [0.5—-0.5 f]wR [n] =>
1 1 2mn 1 _2mn
win] = S wgln] —Ze’ M weln] — e TMweln] (11)

According to the property of frequency shifting we have:

. DFT __ .
x[n]e/@om & X[e/(@=w0)] (1.2)

Using (1.2) and getting DFT of (1.1) we have:

. 1 . 1 w2m] 1 (O
Wlelo] = S Welelo] = W [1730| = 2w [| 1)

(2.b)

The second and third terms widen the mainlobe of Hann window and the sidelobes are lowed by the scaling
factor.

(2.c)

In ideal lowpass filter the width of the main lobe is inversely proportional to the bandwidth. In
this case, the predominant effect of the mainlobe is to smear or spread the original spectrum.
The result is loss of resolution. A “good” window should have a narrow mainlobe (to minimize
spectral spreading) and “low” sidelobes (to minimize spectral leakage). Unfortunately, it is
impossible to satisfy both of these requirements simultaneously. In general, the smoothness of
a signal is measured by the number of continuous derivatives it possesses. The smoother the
signal, the faster the decay of its spectrum. Thus, we can improve leakage behavior by choosing
a smooth (tapered) window. For a given duration, smoothing the window by tapering to reduce
the level of sidelobes decreases the effective time-duration, and therefore increases the width
of the mainlobe. Thus, we cannot simultaneously increase spectral resolution and decrease
leakage. For example using Hann window the main laobe will be wider (disadvantage) and at the

same time the sidelobes will be lower (advantage).

Problem No. 3:

(3.a)

y1[n] = x[n] * h[n]

y2[n] = x[-n] * h[n] =>

yInl =y(n]l + y2[n] =>
[

y[n] = h[n] *x[n] ~ =>

(3.b)

The frequency response is

Fourier Transform

hs[n] = hln] + h[-n]

Hy(e/®) = H(e/*) + H(e /) =>

Hs(e/®) = Hgp(e/®) + jH;(e/®) + Hr(e™/®) + jH;(e™/®)

According to odd symmetry we have: H;(e /®) = —H,(e/®)

(3.1)

(3.2)

Additionally according to even symmetry we have: Hz (e /) = Hi(e/®) (3.3)

From (3.1), (3.2) and (3.3) we have:

Hg(e/®) = Hg(e/®) + jH;(e/®) + Hg(e/*) — jH,(e®)

Hs(e/®) = 2Hg(e’®)

As we can see the phase response is zero. Also the filter is a real filter.

(3.c)

According to the assumption of (3.a) h[n] is IIR filter. So, practical computation of the autocorrelation
function for an IR can thus be done by first computing filter's impulse response, then flipping it left-to-
right (the time inversion), and then computing the convolution of the original impulse response with the

flipped one.

