
http://www.tuto rialspo int.co m/pytho n/pytho n_string s.htm Copyrig ht © tutorialspoint.com

PYTHON STRINGS

String s are among st the most popular types in Python. We can create them simply by enclosing characters in
quotes. Python treats sing le quotes the same as double quotes.

Creating string s is as simple as assig ning a value to a variable. For example:

var1 = 'Hello World!'
var2 = "Python Programming"

Accessing Values in String s:

Python does not support a character type; these are treated as string s of leng th one, thus also considered a
substring .

To access substring s, use the square brackets for slicing along with the index or indices to obtain your
substring . Following is a simple example:

#!/usr/bin/python

var1 = 'Hello World!'
var2 = "Python Programming"

print "var1[0]: ", var1[0]
print "var2[1:5]: ", var2[1:5]

When the above code is executed, it produces the following result:

var1[0]: H
var2[1:5]: ytho

Updating String s:

You can "update" an existing string by (re)assig ning a variable to another string . The new value can be related to
its previous value or to a completely different string altog ether. Following is a simple example:

#!/usr/bin/python

var1 = 'Hello World!'

print "Updated String :- ", var1[:6] + 'Python'

When the above code is executed, it produces the following result:

Updated String :- Hello Python

Escape Characters:

Following table is a list of escape or non-printable characters that can be represented with backslash notation.

An escape character g ets interpreted; in a sing lequoted as well as doublequoted string s.

Backslash
notation

Hexadecimal
character

Description

\a 0x07 Bell or alert

\b 0x08 Backspace

http://www.tutorialspoint.com/python/python_strings.htm

\cx Control-x

\C-x Control-x

\e 0x1b Escape

\f 0x0c Formfeed

\M-\C-x Meta-Control-x

\n 0x0a Newline

\nnn Octal notation, where n is in the rang e 0.7

\r 0x0d Carriag e return

\s 0x20 Space

\t 0x09 Tab

\v 0x0b Vertical tab

\x Character x

\xnn Hexadecimal notation, where n is in the rang e 0.9, a.f, or A.F

String Special Operators:

Assume string variable a holds 'Hello' and variable b holds 'Python', then:

Operator Description Example

+ Concatenation - Adds values on either side of
the operator

a + b will g ive HelloPython

* Repetition - Creates new string s,
concatenating multiple copies of the same
string

a*2 will g ive -HelloHello

[] Slice - Gives the character from the g iven index a[1] will g ive e

[:] Rang e Slice - Gives the characters from the
g iven rang e

a[1:4] will g ive ell

in Membership - Returns true if a character exists
in the g iven string

H in a will g ive 1

not in Membership - Returns true if a character does
not exist in the g iven string

M not in a will g ive 1

r/R Raw String - Suppresses actual meaning of
Escape characters. The syntax for raw string s
is exactly the same as for normal string s with
the exception of the raw string operator, the
letter "r," which precedes the quotation marks.
The "r" can be lowercase (r) or uppercase (R)
and must be placed immediately preceding the
first quote mark.

print r'\n' prints \n and print R'\n'
prints \n

% Format - Performs String formatting See at next section

String Formatting Operator:

One of Python's coolest features is the string format operator %. This operator is unique to string s and makes up
for the pack of having functions from C's printf() family. Following is a simple example:

#!/usr/bin/python

print "My name is %s and weight is %d kg!" % ('Zara', 21)

When the above code is executed, it produces the following result:

My name is Zara and weight is 21 kg!

Here is the list of complete set of symbols which can be used along with %:

Format Symbol Conversion

%c character

%s string conversion via str() prior to formatting

%i sig ned decimal integ er

%d sig ned decimal integ er

%u unsig ned decimal integ er

%o octal integ er

%x hexadecimal integ er (lowercase letters)

%X hexadecimal integ er (UPPERcase letters)

%e exponential notation (with lowercase 'e ')

%E exponential notation (with UPPERcase 'E')

%f floating point real number

%g the shorter of %f and %e

%G the shorter of %f and %E

Other supported symbols and functionality are listed in the following table:

Symbol Functionality

* arg ument specifies width or precision

- left justification

+ display the sig n

<sp> leave a blank space before a positive number

add the octal leading zero ('0') or hexadecimal leading '0x' or '0X',
depending on whether 'x' or 'X' were used.

0 pad from left with zeros (instead of spaces)

% '%%' leaves you with a sing le literal '%'

(var) mapping variable (dictionary arg uments)

m.n. m is the minimum total width and n is the number of dig its to display after the
decimal point (if appl.)

Triple Quotes:

Python's triple quotes comes to the rescue by allowing string s to span multiple lines, including verbatim
NEWLINEs, TABs, and any other special characters.

The syntax for triple quotes consists of three consecutive sing le or double quotes.

#!/usr/bin/python

para_str = """this is a long string that is made up of
several lines and non-printable characters such as
TAB (\t) and they will show up that way when displayed.
NEWLINEs within the string, whether explicitly given like
this within the brackets [\n], or just a NEWLINE within
the variable assignment will also show up.
"""
print para_str;

When the above code is executed, it produces the following result. Note how every sing le special character has
been converted to its printed form, rig ht down to the last NEWLINE at the end of the string between the "up."
and closing triple quotes. Also note that NEWLINEs occur either with an explicit carriag e return at the end of a
line or its escape code (\n):

this is a long string that is made up of
several lines and non-printable characters such as
TAB () and they will show up that way when displayed.
NEWLINEs within the string, whether explicitly given like
this within the brackets [
], or just a NEWLINE within
the variable assignment will also show up.

Raw string s don't treat the backslash as a special character at all. Every character you put into a raw string stays
the way you wrote it:

#!/usr/bin/python

print 'C:\\nowhere'

When the above code is executed, it produces the following result:

C:\nowhere

Now let's make use of raw string . We would put expression in r'expression' as follows:

#!/usr/bin/python

print r'C:\\nowhere'

When the above code is executed, it produces the following result:

C:\\nowhere

Unicode String :

Normal string s in Python are stored internally as 8-bit ASCII, while Unicode string s are stored as 16-bit
Unicode. This allows for a more varied set of characters, including special characters from most lang uag es in

Unicode. This allows for a more varied set of characters, including special characters from most lang uag es in
the world. I'll restrict my treatment of Unicode string s to the following :

#!/usr/bin/python

print u'Hello, world!'

When the above code is executed, it produces the following result:

Hello, world!

As you can see, Unicode string s use the prefix u, just as raw string s use the prefix r.

Built-in String Methods:

Python includes the following built-in methods to manipulate string s:

SN Methods with Description

1 capitalize()
Capitalizes first letter of string

2 center(width, fillchar)
Returns a space-padded string with the orig inal string centered to a total of width columns

3 count(str, beg = 0,end=len(string))
Counts how many times str occurs in string or in a substring of string if starting index beg and ending
index end are g iven

4 decode(encoding ='UTF-8',errors='strict')
Decodes the string using the codec reg istered for encoding . encoding defaults to the default string
encoding .

5 encode(encoding ='UTF-8',errors='strict')
Returns encoded string version of string ; on error, default is to raise a ValueError unless errors is
g iven with 'ig nore' or 'replace'.

6 endswith(suffix, beg =0, end=len(string))
Determines if string or a substring of string (if starting index beg and ending index end are g iven) ends
with suffix; returns true if so and false otherwise

7 expandtabs(tabsize=8)
Expands tabs in string to multiple spaces; defaults to 8 spaces per tab if tabsize not provided

8 find(str, beg =0 end=len(string))
Determine if str occurs in string or in a substring of string if starting index beg and ending index end
are g iven returns index if found and -1 otherwise

9 index(str, beg =0, end=len(string))
Same as find(), but raises an exception if str not found

10 isalnum()
Returns true if string has at least 1 character and all characters are alphanumeric and false otherwise

11 isalpha()
Returns true if string has at least 1 character and all characters are alphabetic and false otherwise

12 isdig it()
Returns true if string contains only dig its and false otherwise

13 islower()
Returns true if string has at least 1 cased character and all cased characters are in lowercase and false
otherwise

/python/string_capitalize.htm
/python/string_center.htm
/python/string_count.htm
/python/string_decode.htm
/python/string_encode.htm
/python/string_endswith.htm
/python/string_expandtabs.htm
/python/string_find.htm
/python/string_index.htm
/python/string_isalnum.htm
/python/string_isalpha.htm
/python/string_isdigit.htm
/python/string_islower.htm

14 isnumeric()
Returns true if a unicode string contains only numeric characters and false otherwise

15 isspace()
Returns true if string contains only whitespace characters and false otherwise

16 istitle()
Returns true if string is properly "titlecased" and false otherwise

17 isupper()
Returns true if string has at least one cased character and all cased characters are in uppercase and
false otherwise

18 join(seq)
Merg es (concatenates) the string representations of elements in sequence seq into a string , with
separator string

19 len(string)
Returns the leng th of the string

20 ljust(width[, fillchar])
Returns a space-padded string with the orig inal string left-justified to a total of width columns

21 lower()
Converts all uppercase letters in string to lowercase

22 lstrip()
Removes all leading whitespace in string

23 maketrans()
Returns a translation table to be used in translate function.

24 max(str)
Returns the max alphabetical character from the string str

25 min(str)
Returns the min alphabetical character from the string str

26 replace(old, new [, max])
Replaces all occurrences of old in string with new or at most max occurrences if max g iven

27 rfind(str, beg =0,end=len(string))
Same as find(), but search backwards in string

28 rindex(str, beg =0, end=len(string))
Same as index(), but search backwards in string

29 rjust(width,[, fillchar])
Returns a space-padded string with the orig inal string rig ht-justified to a total of width columns.

30 rstrip()
Removes all trailing whitespace of string

31 split(str="", num=string .count(str))
Splits string according to delimiter str (space if not provided) and returns list of substring s; split into at
most num substring s if g iven

32 splitlines(num=string .count('\n'))
Splits string at all (or num) NEWLINEs and returns a list of each line with NEWLINEs removed

33 startswith(str, beg =0,end=len(string))
Determines if string or a substring of string (if starting index beg and ending index end are g iven)
starts with substring str; returns true if so and false otherwise

34 strip([chars])

/python/string_isnumeric.htm
/python/string_isspace.htm
/python/string_istitle.htm
/python/string_isupper.htm
/python/string_join.htm
/python/string_len.htm
/python/string_ljust.htm
/python/string_lower.htm
/python/string_lstrip.htm
/python/string_maketrans.htm
/python/string_max.htm
/python/string_min.htm
/python/string_replace.htm
/python/string_rfind.htm
/python/string_rindex.htm
/python/string_rjust.htm
/python/string_rstrip.htm
/python/string_split.htm
/python/string_splitlines.htm
/python/string_startswith.htm
/python/string_strip.htm

Performs both lstrip() and rstrip() on string

35 swapcase()
Inverts case for all letters in string

36 title()
Returns "titlecased" version of string , that is, all words beg in with uppercase and the rest are
lowercase

37 translate(table, deletechars="")
Translates string according to translation table str(256 chars), removing those in the del string

38 upper()
Converts lowercase letters in string to uppercase

39 zfill (width)
Returns orig inal string leftpadded with zeros to a total of width characters; intended for numbers, zfill()
retains any sig n g iven (less one zero)

40 isdecimal()
Returns true if a unicode string contains only decimal characters and false otherwise

/python/string_swapcase.htm
/python/string_title.htm
/python/string_translate.htm
/python/string_upper.htm
/python/string_zfill.htm
/python/string_isdecimal.htm

	PYTHON STRINGS
	Accessing Values in Strings:
	Updating Strings:
	Escape Characters:
	String Special Operators:
	String Formatting Operator:
	Triple Quotes:
	Unicode String:
	Built-in String Methods:

