
http://www.tuto rialspo int.co m/pytho n/pytho n_reg _expressio ns.htm Copyrig ht © tutorialspoint.com

PYTHON REGULAR EXPRESSIONS

A regular expression is a special sequence of characters that helps you match or find other string s or sets of
string s, using a specialized syntax held in a pattern. Reg ular expressions are widely used in UNIX world.

The module re provides full support for Perl-like reg ular expressions in Python. The re module raises the
exception re.error if an error occurs while compiling or using a reg ular expression.

We would cover two important functions, which would be used to handle reg ular expressions. But a small thing
first: There are various characters, which would have special meaning when they are used in reg ular expression.
To avoid any confusion while dealing with reg ular expressions, we would use Raw String s as r'expression' .

The match Function

This function attempts to match RE pattern to string with optional flags.

Here is the syntax for this function:

re.match(pattern, string, flags=0)

Here is the description of the parameters:

Parameter Description

pattern This is the reg ular expression to be matched.

string This is the string , which would be searched to match the pattern at the
beg inning of string .

flag s You can specify different flag s using bitwise OR (|). These are modifiers,
which are listed in the table below.

The re.match function returns a match object on success, None on failure. We would use group(num) or
groups() function of match object to g et matched expression.

Match Object Methods Description

g roup(num=0) This method returns entire match (or specific subg roup num)

g roups() This method returns all matching subg roups in a tuple (empty if there
weren't any)

Example:

#!/usr/bin/python
import re

line = "Cats are smarter than dogs"

matchObj = re.match(r'(.*) are (.*?) .*', line, re.M|re.I)

if matchObj:
 print "matchObj.group() : ", matchObj.group()
 print "matchObj.group(1) : ", matchObj.group(1)
 print "matchObj.group(2) : ", matchObj.group(2)
else:
 print "No match!!"

http://www.tutorialspoint.com/python/python_reg_expressions.htm

When the above code is executed, it produces following result:

matchObj.group() : Cats are smarter than dogs
matchObj.group(1) : Cats
matchObj.group(2) : smarter

The search Function

This function searches for first occurrence of RE pattern within string with optional flags.

Here is the syntax for this function:

re.search(pattern, string, flags=0)

Here is the description of the parameters:

Parameter Description

pattern This is the reg ular expression to be matched.

string This is the string , which would be searched to match the pattern anywhere in
the string .

flag s You can specify different flag s using bitwise OR (|). These are modifiers,
which are listed in the table below.

The re.search function returns a match object on success, None on failure. We would use group(num) or
groups() function of match object to g et matched expression.

Match Object Methods Description

g roup(num=0) This method returns entire match (or specific subg roup num)

g roups() This method returns all matching subg roups in a tuple (empty if there
weren't any)

Example:

#!/usr/bin/python
import re

line = "Cats are smarter than dogs";

matchObj = re.match(r'(.*) are (.*?) .*', line, re.M|re.I)

if matchObj:
 print "matchObj.group() : ", matchObj.group()
 print "matchObj.group(1) : ", matchObj.group(1)
 print "matchObj.group(2) : ", matchObj.group(2)
else:
 print "No match!!"

When the above code is executed, it produces following result:

matchObj.group() : Cats are smarter than dogs
matchObj.group(1) : Cats
matchObj.group(2) : smarter

Matching vs Searching :

Python offers two different primitive operations based on reg ular expressions: match checks for a match only at
the beg inning of the string , while search checks for a match anywhere in the string (this is what Perl does by
default).

Example:

#!/usr/bin/python
import re

line = "Cats are smarter than dogs";

matchObj = re.match(r'dogs', line, re.M|re.I)
if matchObj:
 print "match --> matchObj.group() : ", matchObj.group()
else:
 print "No match!!"

matchObj = re.search(r'dogs', line, re.M|re.I)
if matchObj:
 print "search --> matchObj.group() : ", matchObj.group()
else:
 print "No match!!"

When the above code is executed, it produces the following result:

No match!!
search --> matchObj.group() : dogs

Search and Replace:

Some of the most important re methods that use reg ular expressions is sub.

Syntax:

re.sub(pattern, repl, string, max=0)

This method replaces all occurrences of the RE pattern in string with repl, substituting all occurrences unless
max provided. This method would return modified string .

Example:

Following is the example:

#!/usr/bin/python
import re

phone = "2004-959-559 # This is Phone Number"

Delete Python-style comments
num = re.sub(r'#.*$', "", phone)
print "Phone Num : ", num

Remove anything other than digits
num = re.sub(r'\D', "", phone)
print "Phone Num : ", num

When the above code is executed, it produces the following result:

Phone Num : 2004-959-559
Phone Num : 2004959559

Reg ular-expression Modifiers - Option Flag s

Reg ular expression literals may include an optional modifier to control various aspects of matching . The
modifiers are specified as an optional flag . You can provide multiple modifiers using exclusive OR (|), as shown
previously and may be represented by one of these:

Modifier Description

re.I Performs case-insensitive matching .

re.L Interprets words according to the current locale. This interpretation affects the
alphabetic g roup (\w and \W), as well as word boundary behavior (\b and \B).

re.M Makes $ match the end of a line (not just the end of the string) and makes ^ match
the start of any line (not just the start of the string).

re.S Makes a period (dot) match any character, including a newline.

re.U Interprets letters according to the Unicode character set. This flag affects the
behavior of \w, \W, \b, \B.

re.X Permits "cuter" reg ular expression syntax. It ig nores whitespace (except inside
a set [] or when escaped by a backslash) and treats unescaped # as a comment
marker.

Reg ular-expression patterns:

Except for control characters, (+ ? . * ^ $ () [] { } | \), all characters match themselves. You can escape a
control character by preceding it with a backslash.

Following table lists the reg ular expression syntax that is available in Python:

Pattern Description

^ Matches beg inning of line.

$ Matches end of line.

. Matches any sing le character except newline. Using m option allows it to match
newline as well.

[...] Matches any sing le character in brackets.

[^...] Matches any sing le character not in brackets

re* Matches 0 or more occurrences of preceding expression.

re+ Matches 1 or more occurrence of preceding expression.

re? Matches 0 or 1 occurrence of preceding expression.

re{ n} Matches exactly n number of occurrences of preceding expression.

re{ n,} Matches n or more occurrences of preceding expression.

re{ n, m} Matches at least n and at most m occurrences of preceding expression.

a| b Matches either a or b.

(re) Groups reg ular expressions and remembers matched text.

(?imx) Temporarily tog g les on i, m, or x options within a reg ular expression. If in
parentheses, only that area is affected.

(?-imx) Temporarily tog g les off i, m, or x options within a reg ular expression. If in
parentheses, only that area is affected.

(?: re) Groups reg ular expressions without remembering matched text.

(?imx: re) Temporarily tog g les on i, m, or x options within parentheses.

(?-imx: re) Temporarily tog g les off i, m, or x options within parentheses.

(?#...) Comment.

(?= re) Specifies position using a pattern. Doesn't have a rang e.

(?! re) Specifies position using pattern neg ation. Doesn't have a rang e.

(?> re) Matches independent pattern without backtracking .

\w Matches word characters.

\W Matches nonword characters.

\s Matches whitespace. Equivalent to [\t\n\r\f].

\S Matches nonwhitespace.

\d Matches dig its. Equivalent to [0-9].

\D Matches nondig its.

\A Matches beg inning of string .

\Z Matches end of string . If a newline exists, it matches just before newline.

\z Matches end of string .

\G Matches point where last match finished.

\b Matches word boundaries when outside brackets. Matches backspace (0x08)
when inside brackets.

\B Matches nonword boundaries.

\n, \t, etc. Matches newlines, carriag e returns, tabs, etc.

\1...\9 Matches nth g rouped subexpression.

\10 Matches nth g rouped subexpression if it matched already. Otherwise refers to
the octal representation of a character code.

REGULAR-EXPRESSION EXAMPLES

Literal characters:

Example Description

python Match "python".

Character classes:

Example Description

[Pp]ython Match "Python" or "python"

rub[ye] Match "ruby" or "rube"

[aeiou] Match any one lowercase vowel

[0-9] Match any dig it; same as [0123456789]

[a-z] Match any lowercase ASCII letter

[A-Z] Match any uppercase ASCII letter

[a-zA-Z0-9] Match any of the above

[^aeiou] Match anything other than a lowercase vowel

[^0-9] Match anything other than a dig it

Special Character Classes:

Example Description

. Match any character except newline

\d Match a dig it: [0-9]

\D Match a nondig it: [^0-9]

\s Match a whitespace character: [\t\r\n\f]

\S Match nonwhitespace: [^ \t\r\n\f]

\w Match a sing le word character: [A-Za-z0-9_]

\W Match a nonword character: [^A-Za-z0-9_]

Repetition Cases:

Example Description

ruby? Match "rub" or "ruby": the y is optional

ruby* Match "rub" plus 0 or more ys

ruby+ Match "rub" plus 1 or more ys

\d{3} Match exactly 3 dig its

\d{3,} Match 3 or more dig its

\d{3,5} Match 3, 4, or 5 dig its

Nong reedy repetition:

This matches the smallest number of repetitions:

Example Description

<.*> Greedy repetition: matches "<python>perl>"

<.*?> Nong reedy: matches "<python>" in "<python>perl>"

Grouping with parentheses:

Example Description

\D\d+ No g roup: + repeats \d

(\D\d)+ Grouped: + repeats \D\d pair

([Pp]ython(,)?)+ Match "Python", "Python, python, python", etc.

Backreferences:

This matches a previously matched g roup ag ain:

Example Description

([Pp])ython&\1ails Match python&pails or Python&Pails

(['"])[^\1]*\1 Sing le or double-quoted string . \1 matches whatever the 1st g roup matched . \2
matches whatever the 2nd g roup matched, etc.

Alternatives:

Example Description

python|perl Match "python" or "perl"

rub(y|le)) Match "ruby" or "ruble"

Python(!+|\?) "Python" followed by one or more ! or one ?

Anchors:

This needs to specify match position.

Example Description

^Python Match "Python" at the start of a string or internal line

Python$ Match "Python" at the end of a string or line

\APython Match "Python" at the start of a string

Python\Z Match "Python" at the end of a string

\bPython\b Match "Python" at a word boundary

\brub\B \B is nonword boundary: match "rub" in "rube" and "ruby" but not alone

Python(?=!) Match "Python", if followed by an exclamation point

Python(?!!) Match "Python", if not followed by an exclamation point

Special syntax with parentheses:

Example Description

R(?#comment) Matches "R". All the rest is a comment

R(?i)uby Case-insensitive while matching "uby"

R(?i:uby) Same as above

rub(?:y|le)) Group only without creating \1 backreference

	PYTHON REGULAR EXPRESSIONS
	The match Function
	Example:

	The search Function
	Example:

	Matching vs Searching:
	Example:

	Search and Replace:
	Syntax:
	Example:

	Regular-expression Modifiers - Option Flags
	Regular-expression patterns:

	REGULAR-EXPRESSION EXAMPLES
	Literal characters:
	Character classes:
	Special Character Classes:
	Repetition Cases:
	Nongreedy repetition:
	Grouping with parentheses:
	Backreferences:
	Alternatives:
	Anchors:
	Special syntax with parentheses:

