
http://www.tuto rialspo int.co m/pytho n/pytho n_multithreading .htm Copyrig ht © tutorialspoint.com

PYTHON MULTITHREADED PROGRAMMING

Running several threads is similar to running several different prog rams concurrently, but with the following
benefits:

Multiple threads within a process share the same data space with the main thread and can therefore share
information or communicate with each other more easily than if they were separate processes.

Threads sometimes called lig ht-weig ht processes and they do not require much memory overhead; they
care cheaper than processes.

A thread has a beg inning , an execution sequence, and a conclusion. It has an instruction pointer that keeps track
of where within its context it is currently running .

It can be pre-empted (interrupted)

It can temporarily be put on hold (also known as sleeping) while other threads are running - this is called
yielding .

Starting a New Thread:

To spawn another thread, you need to call following method available in thread module:

thread.start_new_thread (function, args[, kwargs])

This method call enables a fast and efficient way to create new threads in both Linux and Windows.

The method call returns immediately and the child thread starts and calls function with the passed list of agrs.
When function returns, the thread terminates.

Here, args is a tuple of arg uments; use an empty tuple to call function without passing any arg uments. kwargs is
an optional dictionary of keyword arg uments.

Example:

#!/usr/bin/python

import thread
import time

Define a function for the thread
def print_time(threadName, delay):
 count = 0
 while count < 5:
 time.sleep(delay)
 count += 1
 print "%s: %s" % (threadName, time.ctime(time.time()))

Create two threads as follows
try:
 thread.start_new_thread(print_time, ("Thread-1", 2,))
 thread.start_new_thread(print_time, ("Thread-2", 4,))
except:
 print "Error: unable to start thread"

while 1:
 pass

When the above code is executed, it produces the following result:

Thread-1: Thu Jan 22 15:42:17 2009
Thread-1: Thu Jan 22 15:42:19 2009
Thread-2: Thu Jan 22 15:42:19 2009

http://www.tutorialspoint.com/python/python_multithreading.htm

Thread-1: Thu Jan 22 15:42:21 2009
Thread-2: Thu Jan 22 15:42:23 2009
Thread-1: Thu Jan 22 15:42:23 2009
Thread-1: Thu Jan 22 15:42:25 2009
Thread-2: Thu Jan 22 15:42:27 2009
Thread-2: Thu Jan 22 15:42:31 2009
Thread-2: Thu Jan 22 15:42:35 2009

Althoug h it is very effective for low-level threading , but the thread module is very limited compared to the newer
threading module.

The Threading Module:

The newer threading module included with Python 2.4 provides much more powerful, hig h-level support for
threads than the thread module discussed in the previous section.

The threading module exposes all the methods of the thread module and provides some additional methods:

threading .activeCount(): Returns the number of thread objects that are active.

threading .currentThread(): Returns the number of thread objects in the caller's thread control.

threading .enumerate(): Returns a list of all thread objects that are currently active.

In addition to the methods, the threading module has the Thread class that implements threading . The methods
provided by the Thread class are as follows:

run(): The run() method is the entry point for a thread.

start(): The start() method starts a thread by calling the run method.

join([time]): The join() waits for threads to terminate.

isAlive(): The isAlive() method checks whether a thread is still executing .

g etName(): The g etName() method returns the name of a thread.

setName(): The setName() method sets the name of a thread.

Creating Thread using Threading Module:

To implement a new thread using the threading module, you have to do the following :

Define a new subclass of the Thread class.

Override the __init__(self [,args]) method to add additional arg uments.

Then, override the run(self [,arg s]) method to implement what the thread should do when started.

Once you have created the new Thread subclass, you can create an instance of it and then start a new thread by
invoking the start(), which will in turn call run() method.

Example:

#!/usr/bin/python

import threading
import time

exitFlag = 0

class myThread (threading.Thread):
 def __init__(self, threadID, name, counter):
 threading.Thread.__init__(self)
 self.threadID = threadID
 self.name = name
 self.counter = counter

 def run(self):
 print "Starting " + self.name
 print_time(self.name, self.counter, 5)
 print "Exiting " + self.name

def print_time(threadName, delay, counter):
 while counter:
 if exitFlag:
 thread.exit()
 time.sleep(delay)
 print "%s: %s" % (threadName, time.ctime(time.time()))
 counter -= 1

Create new threads
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

Start new Threads
thread1.start()
thread2.start()

print "Exiting Main Thread"

When the above code is executed, it produces the following result:

Starting Thread-1
Starting Thread-2
Exiting Main Thread
Thread-1: Thu Mar 21 09:10:03 2013
Thread-1: Thu Mar 21 09:10:04 2013
Thread-2: Thu Mar 21 09:10:04 2013
Thread-1: Thu Mar 21 09:10:05 2013
Thread-1: Thu Mar 21 09:10:06 2013
Thread-2: Thu Mar 21 09:10:06 2013
Thread-1: Thu Mar 21 09:10:07 2013
Exiting Thread-1
Thread-2: Thu Mar 21 09:10:08 2013
Thread-2: Thu Mar 21 09:10:10 2013
Thread-2: Thu Mar 21 09:10:12 2013
Exiting Thread-2

Synchronizing Threads:

The threading module provided with Python includes a simple-to-implement locking mechanism that will allow you
to synchronize threads. A new lock is created by calling the Lock() method, which returns the new lock.

The acquire(blocking) method of the new lock object would be used to force threads to run synchronously. The
optional blocking parameter enables you to control whether the thread will wait to acquire the lock.

If blocking is set to 0, the thread will return immediately with a 0 value if the lock cannot be acquired and with a 1 if
the lock was acquired. If blocking is set to 1, the thread will block and wait for the lock to be released.

The release() method of the the new lock object would be used to release the lock when it is no long er required.

Example:

#!/usr/bin/python

import threading
import time

class myThread (threading.Thread):
 def __init__(self, threadID, name, counter):
 threading.Thread.__init__(self)
 self.threadID = threadID
 self.name = name
 self.counter = counter
 def run(self):
 print "Starting " + self.name

 # Get lock to synchronize threads
 threadLock.acquire()
 print_time(self.name, self.counter, 3)
 # Free lock to release next thread
 threadLock.release()

def print_time(threadName, delay, counter):
 while counter:
 time.sleep(delay)
 print "%s: %s" % (threadName, time.ctime(time.time()))
 counter -= 1

threadLock = threading.Lock()
threads = []

Create new threads
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

Start new Threads
thread1.start()
thread2.start()

Add threads to thread list
threads.append(thread1)
threads.append(thread2)

Wait for all threads to complete
for t in threads:
 t.join()
print "Exiting Main Thread"

When the above code is executed, it produces the following result:

Starting Thread-1
Starting Thread-2
Thread-1: Thu Mar 21 09:11:28 2013
Thread-1: Thu Mar 21 09:11:29 2013
Thread-1: Thu Mar 21 09:11:30 2013
Thread-2: Thu Mar 21 09:11:32 2013
Thread-2: Thu Mar 21 09:11:34 2013
Thread-2: Thu Mar 21 09:11:36 2013
Exiting Main Thread

Multithreaded Priority Queue:

The Queue module allows you to create a new queue object that can hold a specific number of items. There are
following methods to control the Queue:

g et(): The g et() removes and returns an item from the queue.

put(): The put adds item to a queue.

qsize() : The qsize() returns the number of items that are currently in the queue.

empty(): The empty() returns True if queue is empty; otherwise, False.

full(): the full() returns True if queue is full; otherwise, False.

Example:

#!/usr/bin/python

import Queue
import threading
import time

exitFlag = 0

class myThread (threading.Thread):
 def __init__(self, threadID, name, q):
 threading.Thread.__init__(self)
 self.threadID = threadID
 self.name = name
 self.q = q
 def run(self):
 print "Starting " + self.name
 process_data(self.name, self.q)
 print "Exiting " + self.name

def process_data(threadName, q):
 while not exitFlag:
 queueLock.acquire()
 if not workQueue.empty():
 data = q.get()
 queueLock.release()
 print "%s processing %s" % (threadName, data)
 else:
 queueLock.release()
 time.sleep(1)

threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = Queue.Queue(10)
threads = []
threadID = 1

Create new threads
for tName in threadList:
 thread = myThread(threadID, tName, workQueue)
 thread.start()
 threads.append(thread)
 threadID += 1

Fill the queue
queueLock.acquire()
for word in nameList:
 workQueue.put(word)
queueLock.release()

Wait for queue to empty
while not workQueue.empty():
 pass

Notify threads it's time to exit
exitFlag = 1

Wait for all threads to complete
for t in threads:
 t.join()
print "Exiting Main Thread"

When the above code is executed, it produces the following result:

Starting Thread-1
Starting Thread-2
Starting Thread-3
Thread-1 processing One
Thread-2 processing Two
Thread-3 processing Three
Thread-1 processing Four
Thread-2 processing Five
Exiting Thread-3
Exiting Thread-1
Exiting Thread-2
Exiting Main Thread

	PYTHON MULTITHREADED PROGRAMMING
	Starting a New Thread:
	Example:

	The Threading Module:
	Creating Thread using Threading Module:
	Example:

	Synchronizing Threads:
	Example:

	Multithreaded Priority Queue:
	Example:

