
http://www.tuto rialspo int.co m/pytho n/pytho n_dictio nary.htm Copyrig ht © tutorialspoint.com

PYTHON DICTIONARY

A dictionary is mutable and is another container type that can store any number of Python objects, including other
container types. Dictionaries consist of pairs (called items) of keys and their corresponding values.

Python dictionaries are also known as associative arrays or hash tables. The g eneral syntax of a dictionary is as
follows:

dict = {'Alice': '2341', 'Beth': '9102', 'Cecil': '3258'}

You can create dictionary in the following way as well:

dict1 = { 'abc': 456 };
dict2 = { 'abc': 123, 98.6: 37 };

Each key is separated from its value by a colon (:), the items are separated by commas, and the whole thing is
enclosed in curly braces. An empty dictionary without any items is written with just two curly braces, like this: {}.

Keys are unique within a dictionary while values may not be. The values of a dictionary can be of any type, but the
keys must be of an immutable data type such as string s, numbers, or tuples.

Accessing Values in Dictionary:

To access dictionary elements, you can use the familiar square brackets along with the key to obtain its value.
Following is a simple example:

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

print "dict['Name']: ", dict['Name'];
print "dict['Age']: ", dict['Age'];

When the above code is executed, it produces the following result:

dict['Name']: Zara
dict['Age']: 7

If we attempt to access a data item with a key, which is not part of the dictionary, we g et an error as follows:

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

print "dict['Alice']: ", dict['Alice'];

When the above code is executed, it produces the following result:

dict['Zara']:
Traceback (most recent call last):
 File "test.py", line 4, in <module>
 print "dict['Alice']: ", dict['Alice'];
KeyError: 'Alice'

Updating Dictionary:

You can update a dictionary by adding a new entry or item (i.e., a key-value pair), modifying an existing entry, or
deleting an existing entry as shown below in the simple example:

#!/usr/bin/python

http://www.tutorialspoint.com/python/python_dictionary.htm

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

dict['Age'] = 8; # update existing entry
dict['School'] = "DPS School"; # Add new entry

print "dict['Age']: ", dict['Age'];
print "dict['School']: ", dict['School'];

When the above code is executed, it produces the following result:

dict['Age']: 8
dict['School']: DPS School

Delete Dictionary Elements:

You can either remove individual dictionary elements or clear the entire contents of a dictionary. You can also
delete entire dictionary in a sing le operation.

To explicitly remove an entire dictionary, just use the del statement. Following is a simple example:

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

del dict['Name']; # remove entry with key 'Name'
dict.clear(); # remove all entries in dict
del dict ; # delete entire dictionary

print "dict['Age']: ", dict['Age'];
print "dict['School']: ", dict['School'];

This will produce the following result. Note an exception raised, this is because after del dict dictionary does
not exist any more:

dict['Age']:
Traceback (most recent call last):
 File "test.py", line 8, in <module>
 print "dict['Age']: ", dict['Age'];
TypeError: 'type' object is unsubscriptable

Note: del() method is discussed in subsequent section.

Properties of Dictionary Keys:

Dictionary values have no restrictions. They can be any arbitrary Python object, either standard objects or user-
defined objects. However, same is not true for the keys.

There are two important points to remember about dictionary keys:

(a) More than one entry per key not allowed. Which means no duplicate key is allowed. When duplicate keys
encountered during assig nment, the last assig nment wins. Following is a simple example:

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Name': 'Manni'};

print "dict['Name']: ", dict['Name'];

When the above code is executed, it produces the following result:

dict['Name']: Manni

(b) Keys must be immutable. Which means you can use string s, numbers or tuples as dictionary keys but

something like ['key'] is not allowed. Following is a simple example:

#!/usr/bin/python

dict = {['Name']: 'Zara', 'Age': 7};

print "dict['Name']: ", dict['Name'];

When the above code is executed, it produces the following result:

Traceback (most recent call last):
 File "test.py", line 3, in <module>
 dict = {['Name']: 'Zara', 'Age': 7};
TypeError: list objects are unhashable

Built-in Dictionary Functions & Methods:

Python includes the following dictionary functions:

SN Function with Description

1 cmp(dict1, dict2)
Compares elements of both dict.

2 len(dict)
Gives the total leng th of the dictionary. This would be equal to the number of items in the dictionary.

3 str(dict)
Produces a printable string representation of a dictionary

4 type(variable)
Returns the type of the passed variable. If passed variable is dictionary, then it would return a
dictionary type.

Python includes following dictionary methods

SN Methods with Description

1 dict.clear()
Removes all elements of dictionary dict

2 dict.copy()
Returns a shallow copy of dictionary dict

3 dict.fromkeys()
Create a new dictionary with keys from seq and values set to value.

4 dict.g et(key, default=None)
For key key, returns value or default if key not in dictionary

5 dict.has_key(key)
Returns true if key in dictionary dict, false otherwise

6 dict.items()
Returns a list of dict's (key, value) tuple pairs

7 dict.keys()
Returns list of dictionary dict's keys

8 dict.setdefault(key, default=None)
Similar to g et(), but will set dict[key]=default if key is not already in dict

/python/dictionary_cmp.htm
/python/dictionary_len.htm
/python/dictionary_str.htm
/python/dictionary_type.htm
/python/dictionary_clear.htm
/python/dictionary_copy.htm
/python/dictionary_fromkeys.htm
/python/dictionary_get.htm
/python/dictionary_has_key.htm
/python/dictionary_items.htm
/python/dictionary_keys.htm
/python/dictionary_setdefault.htm

9 dict.update(dict2)
Adds dictionary dict2's key-values pairs to dict

10 dict.values()
Returns list of dictionary dict's values

/python/dictionary_update.htm
/python/dictionary_values.htm

	PYTHON DICTIONARY
	Accessing Values in Dictionary:
	Updating Dictionary:
	Delete Dictionary Elements:
	Properties of Dictionary Keys:
	Built-in Dictionary Functions & Methods:

