
http://www.tuto rialspo int.co m/pytho n/pytho n_database_access.htm Copyrig ht © tutorialspoint.com

PYTHON MYSQL DATABASE ACCESS

The Python standard for database interfaces is the Python DB-API. Most Python database interfaces adhere to
this standard.

You can choose the rig ht database for your application. Python Database API supports a wide rang e of database
servers:

GadFly

mSQL

MySQL

Postg reSQL

Microsoft SQL Server 2000

Informix

Interbase

Oracle

Sybase

Here is the list of available Python database interfaces: Python Database Interfaces and APIs .You must
download a separate DB API module for each database you need to access. For example, if you need to access
an Oracle database as well as a MySQL database, you must download both the Oracle and the MySQL database
modules.

The DB API provides a minimal standard for working with databases using Python structures and syntax
wherever possible. This API includes the following :

Importing the API module.

Acquiring a connection with the database.

Issuing SQL statements and stored procedures.

Closing the connection

We would learn all the concepts using MySQL, so let's talk about MySQLdb module only.

What is MySQLdb?

MySQLdb is an interface for connecting to a MySQL database server from Python. It implements the Python
Database API v2.0 and is built on top of the MySQL C API.

How do I install the MySQLdb?

Before proceeding , you make sure you have MySQLdb installed on your machine. Just type the following in your
Python script and execute it:

#!/usr/bin/python

import MySQLdb

If it produces the following result, then it means MySQLdb module is not installed:

Traceback (most recent call last):
 File "test.py", line 3, in <module>

http://www.tutorialspoint.com/python/python_database_access.htm
http://wiki.python.org/moin/DatabaseInterfaces

 import MySQLdb
ImportError: No module named MySQLdb

To install MySQLdb module, download it from MySQLdb Download pag e and proceed as follows:

$ gunzip MySQL-python-1.2.2.tar.gz
$ tar -xvf MySQL-python-1.2.2.tar
$ cd MySQL-python-1.2.2
$ python setup.py build
$ python setup.py install

Note: Make sure you have root privileg e to install above module.

Database Connection:

Before connecting to a MySQL database, make sure of the following s:

You have created a database TESTDB.

You have created a table EMPLOYEE in TESTDB.

This table is having fields FIRST_NAME, LAST_NAME, AGE, SEX and INCOME.

User ID "testuser" and password "test123" are set to access TESTDB.

Python module MySQLdb is installed properly on your machine.

You have g one throug h MySQL tutorial to understand MySQL Basics.

Example:

Following is the example of connecting with MySQL database "TESTDB"

#!/usr/bin/python

import MySQLdb

Open database connection
db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method
cursor = db.cursor()

execute SQL query using execute() method.
cursor.execute("SELECT VERSION()")

Fetch a single row using fetchone() method.
data = cursor.fetchone()

print "Database version : %s " % data

disconnect from server
db.close()

While running this script, it is producing the following result in my Linux machine.

Database version : 5.0.45

If a connection is established with the datasource, then a Connection Object is returned and saved into db for
further use, otherwise db is set to None. Next, db object is used to create a cursor object, which in turn is
used to execute SQL queries. Finally, before coming out, it ensures that database connection is closed and
resources are released.

Creating Database Table:

Once a database connection is established, we are ready to create tables or records into the database tables

http://sourceforge.net/projects/mysql-python
/mysql/index.htm

using execute method of the created cursor.

Example:

First, let's create Database table EMPLOYEE:

#!/usr/bin/python

import MySQLdb

Open database connection
db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method
cursor = db.cursor()

Drop table if it already exist using execute() method.
cursor.execute("DROP TABLE IF EXISTS EMPLOYEE")

Create table as per requirement
sql = """CREATE TABLE EMPLOYEE (
 FIRST_NAME CHAR(20) NOT NULL,
 LAST_NAME CHAR(20),
 AGE INT,
 SEX CHAR(1),
 INCOME FLOAT)"""

cursor.execute(sql)

disconnect from server
db.close()

INSERT Operation:

INSERT operation is required when you want to create your records into a database table.

Example:

Following is the example, which executes SQL INSERT statement to create a record into EMPLOYEE table:

#!/usr/bin/python

import MySQLdb

Open database connection
db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method
cursor = db.cursor()

Prepare SQL query to INSERT a record into the database.
sql = """INSERT INTO EMPLOYEE(FIRST_NAME,
 LAST_NAME, AGE, SEX, INCOME)
 VALUES ('Mac', 'Mohan', 20, 'M', 2000)"""
try:
 # Execute the SQL command
 cursor.execute(sql)
 # Commit your changes in the database
 db.commit()
except:
 # Rollback in case there is any error
 db.rollback()

disconnect from server
db.close()

Above example can be written as follows to create SQL queries dynamically:

#!/usr/bin/python

import MySQLdb

Open database connection
db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method
cursor = db.cursor()

Prepare SQL query to INSERT a record into the database.
sql = "INSERT INTO EMPLOYEE(FIRST_NAME, \
 LAST_NAME, AGE, SEX, INCOME) \
 VALUES ('%s', '%s', '%d', '%c', '%d')" % \
 ('Mac', 'Mohan', 20, 'M', 2000)
try:
 # Execute the SQL command
 cursor.execute(sql)
 # Commit your changes in the database
 db.commit()
except:
 # Rollback in case there is any error
 db.rollback()

disconnect from server
db.close()

Example:

Following code seg ment is another form of execution where you can pass parameters directly:

..................................
user_id = "test123"
password = "password"

con.execute('insert into Login values("%s", "%s")' % \
 (user_id, password))
..................................

READ Operation:

READ Operation on any databasse means to fetch some useful information from the database.

Once our database connection is established, we are ready to make a query into this database. We can use either
fetchone() method to fetch sing le record or fetchall() method to fetech multiple values from a database table.

fetchone(): This method fetches the next row of a query result set. A result set is an object that is
returned when a cursor object is used to query a table.

fetchall(): This method fetches all the rows in a result set. If some rows have already been extracted
from the result set, the fetchall() method retrieves the remaining rows from the result set.

rowcount: This is a read-only attribute and returns the number of rows that were affected by an
execute() method.

Example:

Following is the procedure to query all the records from EMPLOYEE table having salary more than 1000:

#!/usr/bin/python

import MySQLdb

Open database connection
db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method
cursor = db.cursor()

Prepare SQL query to INSERT a record into the database.
sql = "SELECT * FROM EMPLOYEE \
 WHERE INCOME > '%d'" % (1000)
try:
 # Execute the SQL command
 cursor.execute(sql)
 # Fetch all the rows in a list of lists.
 results = cursor.fetchall()
 for row in results:
 fname = row[0]
 lname = row[1]
 age = row[2]
 sex = row[3]
 income = row[4]
 # Now print fetched result
 print "fname=%s,lname=%s,age=%d,sex=%s,income=%d" % \
 (fname, lname, age, sex, income)
except:
 print "Error: unable to fecth data"

disconnect from server
db.close()

This will produce the following result:

fname=Mac, lname=Mohan, age=20, sex=M, income=2000

Update Operation:

UPDATE Operation on any databasse means to update one or more records, which are already available in the
database. Following is the procedure to update all the records having SEX as 'M'. Here, we will increase AGE of
all the males by one year.

Example:

#!/usr/bin/python

import MySQLdb

Open database connection
db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method
cursor = db.cursor()

Prepare SQL query to UPDATE required records
sql = "UPDATE EMPLOYEE SET AGE = AGE + 1
 WHERE SEX = '%c'" % ('M')
try:
 # Execute the SQL command
 cursor.execute(sql)
 # Commit your changes in the database
 db.commit()
except:
 # Rollback in case there is any error
 db.rollback()

disconnect from server
db.close()

DELETE Operation:

DELETE operation is required when you want to delete some records from your database. Following is the
procedure to delete all the records from EMPLOYEE where AGE is more than 20:

Example:

#!/usr/bin/python

import MySQLdb

Open database connection
db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method
cursor = db.cursor()

Prepare SQL query to DELETE required records
sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)
try:
 # Execute the SQL command
 cursor.execute(sql)
 # Commit your changes in the database
 db.commit()
except:
 # Rollback in case there is any error
 db.rollback()

disconnect from server
db.close()

Performing Transactions:

Transactions are a mechanism that ensures data consistency. Transactions should have the following four
properties:

Atomicity: Either a transaction completes or nothing happens at all.

Consistency: A transaction must start in a consistent state and leave the system in a consistent state.

Isolation: Intermediate results of a transaction are not visible outside the current transaction.

Durability: Once a transaction was committed, the effects are persistent, even after a system failure.

The Python DB API 2.0 provides two methods to either commit or rollback a transaction.

Example:

You already have seen how we have implemented transations. Here is ag ain similar example:

Prepare SQL query to DELETE required records
sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)
try:
 # Execute the SQL command
 cursor.execute(sql)
 # Commit your changes in the database
 db.commit()
except:
 # Rollback in case there is any error
 db.rollback()

COMMIT Operation:

Commit is the operation, which g ives a g reen sig nal to database to finalize the chang es, and after this operation,
no chang e can be reverted back.

Here is a simple example to call commit method.

 db.commit()

ROLLBACK Operation:

If you are not satisfied with one or more of the chang es and you want to revert back those chang es completely,
then use rollback() method.

Here is a simple example to call rollback() method.

 db.rollback()

Disconnecting Database:

To disconnect Database connection, use close() method.

 db.close()

If the connection to a database is closed by the user with the close() method, any outstanding transactions are
rolled back by the DB. However, instead of depending on any of DB lower level implementation details, your
application would be better off calling commit or rollback explicitly.

Handling Errors:

There are many sources of errors. A few examples are a syntax error in an executed SQL statement, a
connection failure, or calling the fetch method for an already canceled or finished statement handle.

The DB API defines a number of errors that must exist in each database module. The following table lists these
exceptions.

Exception Description

Warning Used for non-fatal issues. Must subclass StandardError.

Error Base class for errors. Must subclass StandardError.

InterfaceError Used for errors in the database module, not the database itself. Must subclass Error.

DatabaseError Used for errors in the database. Must subclass Error.

DataError Subclass of DatabaseError that refers to errors in the data.

OperationalError Subclass of DatabaseError that refers to errors such as the loss of a connection to the
database. These errors are g enerally outside of the control of the Python scripter.

Integ rityError Subclass of DatabaseError for situations that would damag e the relational integ rity,
such as uniqueness constraints or foreig n keys.

InternalError Subclass of DatabaseError that refers to errors internal to the database module, such
as a cursor no long er being active.

Prog ramming Error Subclass of DatabaseError that refers to errors such as a bad table name and other
thing s that can safely be blamed on you.

NotSupportedError Subclass of DatabaseError that refers to trying to call unsupported functionality.

Your Python scripts should handle these errors, but before using any of the above exceptions, make sure your
MySQLdb has support for that exception. You can g et more information about them by reading the DB API 2.0
specification.

	PYTHON MYSQL DATABASE ACCESS
	What is MySQLdb?
	How do I install the MySQLdb?
	Database Connection:
	Example:

	Creating Database Table:
	Example:

	INSERT Operation:
	Example:
	Example:

	READ Operation:
	Example:

	Update Operation:
	Example:

	DELETE Operation:
	Example:

	Performing Transactions:
	Example:

	COMMIT Operation:
	ROLLBACK Operation:
	Disconnecting Database:
	Handling Errors:

