PYTHON MYSQL DATABASE ACCESS

The Pythonstandard for database interfaces is the Python DB-API. Most Python database interfaces adhere to
this standard.

Youcanchoose the right database for your application. Python Database API supports a wide range of database
servers:

e GadFly

e mSQL

e MySQL

e PostgreSQL

e Microsoft SQL Server 2000
¢ Informix

e Interbase

e Oracle

e Sybase

Here is the list of available Python database interfaces: Python Database Interfaces and APIs .Youmust
download a separate DB API module for each database youneed to access. For example, if youneed to access
an Oracle database as wellas a MySQL database, you must download both the Oracle and the MySQL database
modules.

The DB API provides a minimal standard for working with databases using Python structures and syntax
wherever possible. This APIincludes the following :

e Importing the APT module.

e Acquiring a connection with the database.

¢ Issuing SQL statements and stored procedures.

¢ Closing the connection
We would learn all the concepts using MySQL, so let's talk about MySQLdb module only.
What is MySQLdb?

MySQLdb is aninterface for connecting to a MySQL database server from Python. It imple ments the Python
Database APIv2.0 and is built ontop of the MySQL C API.

How do Iinstall the MySQLdb?

Before proceeding, youmake sure youhave MySQLdb installed on your machine. Just type the following in your
Pythonscript and execute it:

#!/usr/bin/python

import MySQLdb

Ifit produces the following result, then it me ans MySQLdb module is not installed:

Traceback (most recent call last):
File "test.py", line 3, in <module>

http://www.tutorialspoint.com/python/python_database_access.htm
http://wiki.python.org/moin/DatabaseInterfaces

import MySQLdb
ImportError: No module named MySQLdb

To install MySQLdb module, download it from MySQILdb Download page and proceed as follows:

gunzip MySQL-python-1.2.2.tar.gz
tar -xvf MySQL-python-1.2.2.tar
cd MySQL-python-1.2.2

python setup.py build

python setup.py install

v »» r O

Note: Make sure you have root privilege to install above module.

Database Connection:
Before connecting to a MySQL database, make sure of the following s:
e Youhave created a database TESTDB.
¢ Youhave created a table EMPLOYEE nTESTDB.
e This table is having fields FIRST_NAME, LAST_NAME, AGE, SEX and INCOME.
e UserID "testuser" and password "test123" are setto access TESTDB.
e Pythonmodule MySQLdb is installed properly onyour machine.

e Youhave gone through MySQL tutorial to understand MySQL Basics.

Example:

Following is the example of conne cting with MySQL database "TESTDB"

#!/usr/bin/python
import MySQLdb

Open database connection
db = MySQLdb.connect ("localhost", "testuser", "test123", "TESTDB")

prepare a cursor object using cursor () method
cursor = db.cursor ()

execute SQL query using execute () method.
cursor.execute ("SELECT VERSION()"™)

Fetch a single row using fetchone () method.
data = cursor.fetchone ()

print "Database version : $s " % data

disconnect from server
db.close ()

While running this script, itis producing the following result in my Linux machine.

Database version : 5.0.45

If a connectionis established with the datasource, thena Connection Objectis returned and saved into db for
further use, otherwise db is setto None. Next, db objectis used to create a cursor object, whichin turnis
used to execute SQL queries. Finally, before coming out, it ensures that database connectionis closed and
resources are released.

Creating Database Table:

Once a database connectionis established, we are ready to create tables or records into the database tables

http://sourceforge.net/projects/mysql-python
/mysql/index.htm

using execute method of the created cursor.

Example:

First, let's create Database table EMPLOYEE:

#!/usr/bin/python
import MySQLdb

Open database connection
db = MySQLdb.connect ("localhost", "testuser", "testl1l23", "TESTDB")

prepare a cursor object using cursor() method
cursor = db.cursor ()

Drop table if it already exist using execute () method.
cursor.execute ("DROP TABLE IF EXISTS EMPLOYEE"™)

Create table as per requirement
sql = """CREATE TABLE EMPLOYEE (
FIRST NAME CHAR(20) NOT NULL,
LAST NAME CHAR(20),
AGE INT,
SEX CHAR(1),
INCOME FLOAT)"""

cursor.execute (sql)

disconnect from server
db.close ()

INSERT Operation:

INSERT operationis required when youwant to create your records into a database table.

Example:
Following is the example, which executes SQL INSERT statement to create a record into EMPLOYEE table:

#!/usr/bin/python
import MySQLdb

Open database connection
db = MySQLdb.connect ("localhost", "testuser", "testl1l23", "TESTDB")

prepare a cursor object using cursor() method
cursor = db.cursor ()

Prepare SQL query to INSERT a record into the database.
sgql = """INSERT INTO EMPLOYEE(FIRST_NAME,
LAST NAME, AGE, SEX, INCOME)
VALUES ('Mac', 'Mohan', 20, 'M', 2000)"""
try:
Execute the SQL command
cursor.execute (sql)
Commit your changes in the database
db.commit ()
except:
Rollback in case there is any error
db.rollback ()

disconnect from server
db.close ()

Above example canbe written as follows to create SQL queries dynamically:

#!/usr/bin/python
import MySQLdb

Open database connection
db = MySQLdb.connect ("localhost", "testuser", "test123", "TESTDB")

prepare a cursor object using cursor () method
cursor = db.cursor ()

Prepare SQL query to INSERT a record into the database.

sgl = "INSERT INTO EMPLOYEE (FIRST NAME, \
LAST NAME, AGE, SEX, INCOME) \
VALUES ('%s', '$s', '3d', 'sc', '%d')" % \

("Mac', 'Mohan', 20, 'M', 2000)
try:
Execute the SQL command
cursor.execute (sql)
Commit your changes in the database
db.commit ()
except:
Rollback in case there is any error
db.rollback()

disconnect from server
db.close ()

Example:

Following code segment is another form of execution where you canpass parameters directly:

user id = "testl23"
password = "password"

con.execute ('insert into Login values ("%s", "%s")' % \
(user id, password))

..................................

READ Operation:
READ Operation on any databasse means to fetch some useful information from the database.

Once our database connectionis established, we are ready to make a query into this database. We canuse either
fetchone () method to fetch single record or fetchall() method to fetech multiple values from a database table.

o fetchone(): This method fetches the nextrow of a query resultset. Aresultsetis anobjectthatis
returned whena cursor objectis used to query a table.

e fetchall(): This method fetches all the rows ina result set. If some rows have already beenextracted
fromthe result set, the fetchall() method retrieves the remaining rows fromthe result set.

e rowcount: This is a read-only attribute and returns the number of rows that were affected by an
execute() method.

Example:
Following is the procedure to query all the records from EMPLOYEE table having salary more than1000:

#!/usr/bin/python

import MySQLdb

Open database connection
db = MySQLdb.connect ("localhost", "testuser", "test123", "TESTDB")

prepare a cursor object using cursor () method
cursor = db.cursor ()

Prepare SQL query to INSERT a record into the database.
sql = "SELECT * FROM EMPLOYEE \
WHERE INCOME > '%d'™ % (1000)
try:
Execute the SQL command
cursor.execute (sql)
Fetch all the rows in a list of lists.

results = cursor.fetchall ()
for row in results:

fname = row[0]

lname = row[1]

age = row[2]

sex = row|3]

income = rowl[4]

Now print fetched result
print "fname=%s, lname=%s,age=%d, sex=%s, income=%d" % \
(fname, lname, age, sex, income)
except:
print "Error: unable to fecth data"

disconnect from server
db.close ()

This will produce the following result:

fname=Mac, lname=Mohan, age=20, sex=M, income=2000

Update Operation:

UPDATE Operation on any databasse means to update one or more records, which are already available in the
database. Following is the procedure to update all the records having SEX as 'M'. Here, we willincrease AGE of
all the males by one year.

Example:

#!/usr/bin/python
import MySQLdb

Open database connection
db = MySQLdb.connect ("localhost", "testuser", "test123", "TESTDB")

prepare a cursor object using cursor () method
cursor = db.cursor ()

Prepare SQL query to UPDATE required records

sgql = "UPDATE EMPLOYEE SET AGE = AGE + 1
WHERE SEX = 'sc'" % ('M')
try:

Execute the SQL command
cursor.execute (sql)
Commit your changes in the database
db.commit ()

except:
Rollback in case there is any error
db.rollback()

disconnect from server
db.close ()

DELETE Operation:

DELETE operationis required whenyouwant to delete some records fromyour database. Following is the
procedure to delete allthe records from EMPLOYEE where AGE is more than 20:

Example:

#!/usr/bin/python
import MySQLdb

Open database connection
db = MySQLdb.connect ("localhost", "testuser", "test1l23", "TESTDB")

prepare a cursor object using cursor () method
cursor = db.cursor ()

Prepare SQL query to DELETE required records
sql = "DELETE FROM EMPLOYEE WHERE AGE > '&d'" % (20)
try:
Execute the SQL command
cursor.execute (sql)
Commit your changes in the database
db.commit ()
except:
Rollback in case there is any error
db.rollback()

disconnect from server
db.close ()

Performing Transactions:

Transactions are a mechanismthat ensures data consistency. Transactions should have the following four
properties:

¢ Atomicity: Either a transaction completes or nothing happens at all.

¢ Consistency: A transaction must startina consistent state and leave the systemina consistent state.
¢ Isolation: Intermediate results of a transaction are not visible outside the current transaction.

e Durability: Once a transaction was committed, the effects are persistent, evenafter a system failure.

The Python DB API 2.0 provides two methods to either commit or rollback a transaction.

Example:
Youalready have seenhow we have implemented transations. Here is again similar example:

Prepare SQL query to DELETE required records
sql = "DELETE FROM EMPLOYEE WHERE AGE > '&d'" % (20)
try:
Execute the SQL command
cursor.execute (sql)
Commit your changes in the database
db.commit ()
except:
Rollback in case there is any error
db.rollback()

COMMIT Operation:

Commit is the operation, which gives a greensignal to database to finalize the changes, and after this operation,
no change canbe reverted back.

Here is a simple example to call commit method.

db.commit ()

ROLLBACK Operation:

Ifyou are not satisfied with one or more of the chang es and you want to revert back those changes completely,
thenuse rollback() method.

Here is a simple example to callrollback() method.

db.rollback ()

Disconnecting Database:

To disconnect Database connection, use close () method.

db.close ()

If the connectionto a database is closed by the user with the close() method, any outstanding transactions are
rolled back by the DB. However, instead of depending on any of DB lower le vel imple me ntation details, your
application would be better off calling commit or rollback explicitly.

Handling Errors:

There are many sources of errors. A few examples are a syntax error inanexecuted SQL statement, a
conne ction failure, or calling the fetch method for analready canceled or finished state ment handle.

The DB APIdefines a number of errors that must exist in each database module. The following table lists these

exceptions.

Exception Description

Warning Used for non-fatal issues. Must subclass StandardError.

Error Base class for errors. Mustsubclass StandardError.

Interface Error Used for errors inthe database module, not the database itself. Must subclass Error.

DatabaseError Used for errors inthe database. Must subclass Error.

DataError Subclass of Database Error that refers to errors inthe data.

OperationalError Subclass of Database Error that refers to errors such as the loss of a connection to the
database. These errors are generally outside of the control of the Pythonscripter.

IntegrityError Subclass of Database Error for situations that would damage the relational inte g rity,
such as uniqueness constraints or foreignkeys.

InternalError Subclass of Database Error thatrefers to errors internal to the database module, such
as a cursor no longer being active.

Programming Error ~ Subclass of Database Error that refers to errors such as a bad table name and other
thing s that cansafely be blamed onyou.

NotSupportedError = Subclass of Database Error thatrefers to trying to call unsupported functionality.

Your Pythonscripts should handle these errors, but before using any of the above exceptions, make sure your
MySQLdb has support for that exception. You can get more information about themby reading the DB API 2.0
specification.

	PYTHON MYSQL DATABASE ACCESS
	What is MySQLdb?
	How do I install the MySQLdb?
	Database Connection:
	Example:

	Creating Database Table:
	Example:

	INSERT Operation:
	Example:
	Example:

	READ Operation:
	Example:

	Update Operation:
	Example:

	DELETE Operation:
	Example:

	Performing Transactions:
	Example:

	COMMIT Operation:
	ROLLBACK Operation:
	Disconnecting Database:
	Handling Errors:

